Review Article| Volume 43, ISSUE 1, P115-125, March 2023

Download started.


Laboratory Aspects of Minimal / Measurable Residual Disease Testing in B-Lymphoblastic Leukemia


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Athale U.H.
        • Gibson P.J.
        • Bradley N.M.
        • et al.
        Minimal residual disease and childhood leukemia: standard of care recommendations from the Pediatric Oncology Group of Ontario MRD Working Group.
        Pediatr Blood Cancer. 2016; 63: 973-982
        • Borowitz M.J.
        • Devidas M.
        • Hunger S.P.
        • et al.
        Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study.
        Blood. 2008; 111: 5477-5485
        • Conter V.
        • Bartram C.R.
        • Valsecchi M.G.
        • et al.
        Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study.
        Blood. 2010; 115: 3206-3214
        • Vora A.
        • Goulden N.
        • Wade R.
        • et al.
        Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial.
        Lancet Oncol. 2013; 14: 199-209
        • Stow P.
        • Key L.
        • Chen X.
        • et al.
        Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia.
        Blood. 2010; 115: 4657-4663
        • Leung W.
        • Pui C.H.
        • Coustan-Smith E.
        • et al.
        Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia.
        Blood. 2012; 120: 468-472
        • Akabane H.
        • Logan A.
        Clinical significance and management of MRD in adults with acute lymphoblastic leukemia.
        Clin Adv Hematol Oncol. 2020; 18: 413-422
        • Bruggemann M.
        • Kotrova M.
        Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation.
        Blood Adv. 2017; 1: 2456-2466
        • Cassaday R.D.
        • Stevenson P.A.
        • Wood B.L.
        • et al.
        Description and prognostic significance of the kinetics of minimal residual disease status in adults with acute lymphoblastic leukemia treated with HyperCVAD.
        Am J Hematol. 2018; 93: 546-552
        • O'Connor D.
        • Moorman A.V.
        • Wade R.
        • et al.
        Use of minimal residual disease assessment to redefine induction failure in pediatric acute lymphoblastic leukemia.
        J Clin Oncol. 2017; 35: 660-667
        • Gupta S.
        • Devidas M.
        • Loh M.L.
        • et al.
        Flow-cytometric vs. -morphologic assessment of remission in childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group (COG).
        Leukemia. 2018; 32: 1370-1379
        • Lucio P.
        • Parreira A.
        • van den Beemd M.W.
        • et al.
        Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL.
        Leukemia. 1999; 13: 419-427
        • Shalabi H.
        • Yuan C.M.
        • Kulshreshtha A.
        • et al.
        Disease detection methodologies in relapsed B-cell acute lymphoblastic leukemia: opportunities for improvement.
        Pediatr Blood Cancer. 2020; 67: e28149
        • Flohr T.
        • Schrauder A.
        • Cazzaniga G.
        • et al.
        Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia.
        Leukemia. 2008; 22: 771-782
        • Campana D.
        Determination of minimal residual disease in leukaemia patients.
        Br J Haematol. 2003; 121: 823-838
        • Gabert J.
        • Beillard E.
        • van der Velden V.H.
        • et al.
        Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe against Cancer program.
        Leukemia. 2003; 17: 2318-2357
        • Faham M.
        • Zheng J.
        • Moorhead M.
        • et al.
        Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia.
        Blood. 2012; 120: 5173-5180
        • Pulsipher M.A.
        • Carlson C.
        • Langholz B.
        • et al.
        IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients.
        Blood. 2015; 125: 3501-3508
        • Wood B.
        • Wu D.
        • Crossley B.
        • et al.
        Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL.
        Blood. 2018; 131: 1350-1359
        • Della Starza I.
        • De Novi L.A.
        • Santoro A.
        • et al.
        Digital droplet PCR and next-generation sequencing refine minimal residual disease monitoring in acute lymphoblastic leukemia.
        Leuk Lymphoma. 2019; 60: 2838-2840
        • Della Starza I.
        • Chiaretti S.
        • De Propris M.S.
        • et al.
        Minimal residual disease in acute lymphoblastic leukemia: technical and clinical advances.
        Front Oncol. 2019; 9: 726
        • Gaipa G.
        • Cazzaniga G.
        • Valsecchi M.G.
        • et al.
        Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia.
        Haematologica. 2012; 97: 1582-1593
        • Tembhare P.R.
        • Subramanian P.G.
        • Ghogale S.
        • et al.
        A high-sensitivity 10-color flow cytometric minimal residual disease assay in B-lymphoblastic leukemia/lymphoma can easily achieve the sensitivity of 2-in-10(6) and is superior to standard minimal residual disease assay: a study of 622 patients.
        Cytometry B Clin Cytom. 2020; 98: 57-67
        • Theunissen P.M.J.
        • Sedek L.
        • De Haas V.
        • et al.
        Detailed immunophenotyping of B-cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection.
        Br J Haematol. 2017; 178: 257-266
        • Fossat C.
        • Roussel M.
        • Arnoux I.
        • et al.
        Methodological aspects of minimal residual disease assessment by flow cytometry in acute lymphoblastic leukemia: a French multicenter study.
        Cytometry B Clin Cytom. 2015; 88: 21-29
        • Theunissen P.
        • Mejstrikova E.
        • Sedek L.
        • et al.
        Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia.
        Blood. 2017; 129: 347-357
        • Schumich A.
        • Maurer-Granofszky M.
        • Attarbaschi A.
        • et al.
        Flow-cytometric minimal residual disease monitoring in blood predicts relapse risk in pediatric B-cell precursor acute lymphoblastic leukemia in trial AIEOP-BFM-ALL 2000.
        Pediatr Blood Cancer. 2019; 66: e27590
        • Pui C.H.
        • Pei D.
        • Raimondi S.C.
        • et al.
        Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy.
        Leukemia. 2017; 31: 333-339
        • Chen X.
        • Wood B.L.
        Monitoring minimal residual disease in acute leukemia: technical challenges and interpretive complexities.
        Blood Rev. 2017; 31: 63-75
        • Shaver A.C.
        • Seegmiller A.C.
        B lymphoblastic leukemia minimal residual disease assessment by flow cytometric analysis.
        Clin Lab Med. 2017; 37: 771-785
        • Keeney M.
        • Halley J.G.
        • Rhoads D.D.
        • et al.
        Marked variability in reported minimal residual disease lower level of detection of 4 hematolymphoid neoplasms: a survey of participants in the College of American Pathologists Flow Cytometry Proficiency Testing Program.
        Arch Pathol Lab Med. 2015; 139: 1276-1280
        • Keeney M.
        • Wood B.L.
        • Hedley B.D.
        • et al.
        A QA program for MRD testing demonstrates that systematic education can reduce discordance among experienced interpreters.
        Cytometry B Clin Cytom. 2018; 94: 239-249
        • Hupp M.M.
        • Bashleben C.
        • Cardinali J.L.
        • et al.
        Participation in the College of American Pathologists Laboratory accreditation program decreases variability in B-lymphoblastic leukemia and plasma cell myeloma flow cytometric minimal residual disease testing: a follow-up survey.
        Arch Pathol Lab Med. 2021; 145: 336-342
        • Kroft S.H.
        • Harrington A.M.
        Flow cytometry of B-Cell neoplasms.
        Clin Lab Med. 2017; 37: 697-723
        • Jain S.
        • Mehta A.
        • Kapoor G.
        • et al.
        Evaluating new markers for minimal residual disease analysis by flow cytometry in precursor B lymphoblastic leukemia.
        Indian J Hematol Blood Transfus. 2018; 34: 48-53
        • Borowitz M.J.
        • Pullen D.J.
        • Winick N.
        • et al.
        Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children's oncology group.
        Cytometry B Clin Cytom. 2005; 68: 18-24
        • Cherian S.
        • Miller V.
        • McCullouch V.
        • et al.
        A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy.
        Cytometry B Clin Cytom. 2018; 94: 112-120
        • Belkina A.C.
        • Ciccolella C.O.
        • Anno R.
        • et al.
        Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets.
        Nat Commun. 2019; 10: 5415
        • Mair F.
        • Hartmann F.J.
        • Mrdjen D.
        • et al.
        The end of gating? An introduction to automated analysis of high dimensional cytometry data.
        Eur J Immunol. 2016; 46: 34-43
        • Lucchesi S.
        • Nolfi E.
        • Pettini E.
        • et al.
        Computational analysis of multiparametric flow cytometric data to dissect B cell subsets in vaccine studies.
        Cytometry A. 2020; 97: 259-267
        • DiGiuseppe J.A.
        • Tadmor M.D.
        • Pe'er D.
        Detection of minimal residual disease in B lymphoblastic leukemia using viSNE.
        Cytometry B Clin Cytom. 2015; 88: 294-304
        • Perfetto S.P.
        • Chattopadhyay P.K.
        • Roederer M.
        Seventeen-colour flow cytometry: unravelling the immune system.
        Nat Rev Immunol. 2004; 4: 648-655
        • Robinson J.P.
        Spectral flow cytometry-Quo vadimus?.
        Cytometry A. 2019; 95: 823-824
        • Park L.M.
        • Lannigan J.
        • Jaimes M.C.
        OMIP-069: forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood.
        Cytometry A. 2020; 97: 1044-1051
        • Latis E.
        • Michonneau D.
        • Leloup C.
        • et al.
        Cellular and molecular profiling of T-cell subsets at the onset of human acute GVHD.
        Blood Adv. 2020; 4: 3927-3942