Advertisement

Utility of Fluorescence In Situ Hybridization in Clinical and Research Applications

  • Gail H. Vance
    Affiliations
    Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street IB 354, Indianapolis, IN 46202, USA

    Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, IN 46202-5120, USA
    Search for articles by this author
  • Wahab A. Khan
    Correspondence
    Corresponding author. Department of Pathology, Dartmouth-Hitchcock Medical Center, Williamson Translational Research Building–4th Floor, 1 Medical Center Drive, Lebanon, NH 03766.
    Affiliations
    Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Williamson Translational Research Building–4th Floor, 1 Medical Center Drive, Lebanon, NH 03766, USA

    Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
    Search for articles by this author
      Fluorescence in situ hybridization (FISH) permits nucleic acid sequences to be detected directly on metaphase chromosome or interphase nuclei.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pardue M.L.
        • Gall J.G.
        Molecular hybridization of radioactive DNA to the DNA of cytological preparations.
        Proc Natl Acad Sci U S A. 1969; 64: 600-604
        • Manning J.E.
        • Hershey N.D.
        • Broker T.R.
        • et al.
        A new method of in situ hybridization.
        Chromosoma. 1975; 53: 107-117
        • Bi W.
        • Borgan C.
        • Pursley A.N.
        • et al.
        Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era?.
        Genet Med. 2013; 15: 450-457
        • Swerdlow S.
        • Campo E.
        • Harris N.
        • et al.
        4th edition. WHO classification of tumours of haematopoietic and lymphoid tissues. vol. 2. WHO Press, Lyon (France)2017
        • Gozzetti A.
        • Le Beau M.M.
        Fluorescence in situ hybridization: uses and limitations.
        Semin Hematol. 2000; 37: 320-333
        • Khan W.A.
        • Rogan P.K.
        • Knoll J.H.
        Localized, non-random differences in chromatin accessibility between homologous metaphase chromosomes.
        Mol Cytogenet. 2014; 7: 70
        • Yusuf M.
        • Kaneyoshi K.
        • Fukui K.
        • et al.
        Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes.
        Chromosoma. 2019; 128: 7-13https://doi.org/10.1007/s00412-018-0678-5
        • Chen T.R.
        Fluorescence in situ hybridization (FISH): detection of biotin- and digoxigenin-labeled signals on chromosomes.
        J Tissue Cult Methods. 1994; 16: 39-47
        • Telenius H.
        • Pelmear A.H.
        • Tunnacliffe A.
        • et al.
        Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes.
        Genes Chromosomes Cancer. 1992; 4: 257-263
        • Wiegant J.C.
        • van Gijlswijk R.P.
        • Heetebrij R.J.
        • et al.
        ULS: a versatile method of labeling nucleic acids for FISH based on a monofunctional reaction of cisplatin derivatives with guanine moieties.
        Cytogenet Cell Genet. 1999; 87: 47-52
        • Knoll J.H.M.
        Human metaphase chromosome FISH using quantum dot conjugates.
        Methods Mol Biol. 2007; 374: 55-66
        • Müller S.
        • Cremer M.
        • Neusser M.
        • et al.
        A technical note on quantum dots for multi-color fluorescence in situ hybridization.
        Cytogenet Genome Res. 2009; 124: 351-359
        • Netten H.
        • Young I.T.
        • van Vliet L.J.
        • et al.
        FISH and chips: automation of fluorescent dot counting in interphase cell nuclei.
        Cytometry. 1997; 28: 1-10
        • Vrolijk H.
        • Sloos W.C.
        • van de Rijke F.M.
        • et al.
        Automation of spot counting in interphase cytogenetics using brightfield microscopy.
        Cytometry. 1996; 24: 158-166
        • Lerner B.
        • Clocksin W.F.
        • Dhanjal S.
        • et al.
        Automatic signal classification in fluorescence in situ hybridization images.
        Cytometry. 2001; 43: 87-93
        • Malpica N.
        • de Solórzano C.O.
        • Vaquero J.J.
        • et al.
        Applying watershed algorithms to the segmentation of clustered nuclei.
        Cytometry. 1997; 28: 289-297
        • Kozubek M.
        • Kozubek S.
        • Lukásová E.
        • et al.
        High-resolution cytometry of FISH dots in interphase cell nuclei.
        Cytometry. 1999; 36: 279-293
        • van der Logt E.M.J.
        • Kuperus D.A.J.
        • van Setten J.W.
        • et al.
        Fully automated fluorescent in situ hybridization (FISH) staining and digital analysis of HER2 in breast cancer: a validation study.
        PLoS One. 2015; 10: e0123201
        • Kajtár B.
        • Méhes G.
        • Lörch T.
        • et al.
        Automated fluorescent in situ hybridization (FISH) analysis of t(9;22)(q34;q11) in interphase nuclei.
        Cytometry A. 2006; 69: 506-514
      1. Abbott Molecular Inc. UroVysion: Bladder Cancer Kit.
        (Available at:) (Accessed March 14, 2020)
        • Mascarello J.T.
        • Hirsch B.
        • Kearney H.M.
        • et al.
        Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization.
        Genet Med. 2011; 13: 667-675
        • Mascarello J.T.
        • Hirsch B.
        • Kearney H.M.
        • et al.
        ADDENDUM: section E9 of the American College of Medical Genetics Technical Standards and Guidelines: fluorescence in situ hybridization.
        Genet Med. 2019; 21: 2405
      2. MM07A2: FISH Methods for Clinical Laboratories - CLSI. Clinical & Laboratory Standards institute.
        (Available at:) (Accessed January 6, 2020)
        • Yoshimoto M.
        • Ludkovski O.
        • Good J.
        • et al.
        Use of multicolor fluorescence in situ hybridization to detect deletions in clinical tissue sections.
        Lab Invest. 2018; 98: 403-413
        • Gu J.
        • Smith J.L.
        • Dowling P.K.
        Fluorescence in situ hybridization probe validation for clinical use.
        Methods Mol Biol. 2017; 1541: 101-118
        • Saxe D.F.
        • Persons D.L.
        • Wolff D.J.
        • et al.
        Cytogenetics Resource Committee of the College of American Pathologists. Validation of fluorescence in situ hybridization using an analyte-specific reagent for detection of abnormalities involving the mixed lineage leukemia gene.
        Arch Pathol Lab Med. 2012; 136: 47-52
        • Sabattini E.
        • Bacci F.
        • Sagramoso C.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview.
        Pathologica. 2010; 102: 83-87
        • Maier J.
        • Lange T.
        • Cross M.
        • et al.
        Optimized digital droplet PCR for BCR-ABL.
        J Mol Diagn. 2019; 21: 27-37
        • Wolff D.J.
        • Bagg A.
        • Cooley L.D.
        • et al.
        Guidance for fluorescence in situ hybridization testing in hematologic disorders.
        J Mol Diagn. 2007; 9: 134-143
        • Bueso-Ramos C.E.
        • Kanagal-Shamanna R.
        • Routbort M.J.
        • et al.
        Therapy-related myeloid neoplasms.
        Am J Clin Pathol. 2015; 144: 207-218
        • Nowell P.C.
        The minute chromosome (Phl) in chronic granulocytic leukemia.
        Blut. 1962; 8: 65-66
        • Rowley J.D.
        Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.
        Nature. 1973; 243: 290-293
        • Castagnetti F.
        • Testoni N.
        • Luatti S.
        • et al.
        Deletions of the derivative chromosome 9 do not influence the response and the outcome of chronic myeloid leukemia in early chronic phase treated with imatinib mesylate: GIMEMA CML Working Party analysis.
        J Clin Oncol. 2010; 28: 2748-2754
        • Luatti S.
        • Baldazzi C.
        • Marzocchi G.
        • et al.
        Cryptic BCR-ABL fusion gene as variant rearrangement in chronic myeloid leukemia: molecular cytogenetic characterization and influence on TKIs therapy.
        Oncotarget. 2017; 8: 29906-29913
        • Hilal T.
        • Fauble V.
        • Ketterling R.P.
        • et al.
        Myeloid neoplasm with eosinophilia associated with isolated extramedullary FIP1L1/PDGFRA rearrangement.
        Cancer Genet. 2018; 220: 13-18
      3. Revised International Staging System for Multiple Myeloma: a report from International Myeloma Working Group. - PubMed - NCBI.
        (Available at:) (Accessed February 4, 2020)
        • Hu Y.
        • Chen W.
        • Wang J.
        Progress in the identification of gene mutations involved in multiple myeloma.
        Oncotargets Ther. 2019; 12: 4075-4080
        • Tan D.
        • Lee J.H.
        • Chen W.
        • et al.
        Recent advances in the management of multiple myeloma: clinical impact based on resource-stratification. Consensus statement of the Asian Myeloma Network at the 16th International Myeloma Workshop.
        Leuk Lymphoma. 2018; 59: 2305-2317
        • Avet-Loiseau H.
        • Brigaudeau C.
        • Morineau N.
        • et al.
        High incidence of cryptic translocations involving the Ig heavy chain gene in multiple myeloma, as shown by fluorescence in situ hybridization.
        Genes Chromosomes Cancer. 1999; 24: 9-15
        • Swerdlow S.H.
        • Campo E.
        • Pileri S.A.
        • et al.
        The 2016 revision of the World Health Organization classification of lymphoid neoplasms.
        Blood. 2016; 127: 2375-2390
        • Roos-Weil D.
        • Nguyen-Khac F.
        • Chevret S.
        • et al.
        Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: a retrospective study from the French Innovative Leukemia Organization (FILO) working group.
        Genes Chromosomes Cancer. 2018; 57: 533-540
        • Chastain E.C.
        • Duncavage E.J.
        Clinical prognostic biomarkers in chronic lymphocytic leukemia and diffuse large B-cell lymphoma.
        Arch Pathol Lab Med. 2015; 139: 602-607
        • Berry N.K.
        • Scott R.J.
        • Rowlings P.
        • et al.
        Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies.
        Crit Rev Oncol Hematol. 2019; 142: 58-67
        • Sutton R.
        • Venn N.C.
        • Law T.
        • et al.
        A risk score including microdeletions improves relapse prediction for standard and medium risk precursor B-cell acute lymphoblastic leukaemia in children.
        Br J Haematol. 2018; 180: 550-562
        • Baughn L.B.
        • Biegel J.A.
        • South S.T.
        • et al.
        Integration of cytogenomic data for furthering the characterization of pediatric B-cell acute lymphoblastic leukemia: a multi-institution, multi-platform microarray study.
        Cancer Genet. 2015; 208: 1-18
        • da Silva F.B.
        • Machado-Neto J.A.
        • Bertini V.H.L.L.
        • et al.
        Single-nucleotide polymorphism array (SNP-A) improves the identification of chromosomal abnormalities by metaphase cytogenetics in myelodysplastic syndrome.
        J Clin Pathol. 2017; 70: 435-442
        • Zhong Y.
        • Beimnet K.
        • Alli Z.
        • et al.
        Multiplexed digital detection of B-cell acute lymphoblastic leukemia fusion transcripts using the nanoString nCounter System.
        J Mol Diagn. 2020; 22: 72-80
        • Fuller K.A.
        • Bennett S.
        • Hui H.
        • et al.
        Development of a robust immuno-S-FISH protocol using imaging flow cytometry.
        Cytometry A. 2016; 89: 720-730
        • Elcock L.S.
        • Bridger J.M.
        Fluorescence in situ hybridization on DNA halo preparations and extended chromatin fibres.
        Methods Mol Biol. 2010; 659: 21-31
        • Knoll J.H.M.
        • Rogan P.K.
        Sequence-based, in situ detection of chromosomal abnormalities at high resolution.
        Am J Med Genet A. 2003; 121A: 245-257
        • Ni Y.
        • Cao B.
        • Ma T.
        • et al.
        Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes.
        eLife. 2017; 6: e21660
        • Khan W.A.
        • Chisholm R.
        • Tadayyon S.
        • et al.
        Relating centromeric topography in fixed human chromosomes to α-satellite DNA and CENP-B distribution.
        Cytogenet Genome Res. 2013; 139: 234-242
        • Kyriacou E.
        • Heun P.
        High-resolution mapping of centromeric protein association using APEX-chromatin fibers.
        Epigenetics Chromatin. 2018; 11: 68
        • Arrigucci R.
        • Bushkin Y.
        • Radford F.
        • et al.
        FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry.
        Nat Protoc. 2017; 12: 1245-1260
        • Wang H.
        • Nakamura M.
        • Abbott T.R.
        • et al.
        CRISPR-mediated live imaging of genome editing and transcription.
        Science. 2019; 365: 1301-1305
        • Giunta S.
        Centromere chromosome orientation fluorescent in situ hybridization (Cen-CO-FISH) detects sister chromatid exchange at the centromere in human cells.
        Bio Protoc. 2018; 8: e2792
        • Williams E.S.
        • Cornforth M.N.
        • Goodwin E.H.
        • et al.
        CO-FISH, COD-FISH, ReD-FISH, SKY-FISH.
        Methods Mol Biol. 2011; 735: 113-124
        • Weise A.
        • Gross M.
        • Hinreiner S.
        • et al.
        POD-FISH: a new technique for parental origin determination based on copy number variation polymorphism.
        Methods Mol Biol. 2010; 659: 291-298
        • Huber D.
        • Kaigala G.V.
        Rapid micro fluorescence in situ hybridization in tissue sections.
        Biomicrofluidics. 2018; 12: 042212
        • Beliveau B.J.
        • Kishi J.Y.
        • Nir G.
        • et al.
        OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes.
        Proc Natl Acad Sci U S A. 2018; 115: E2183-E2192