Advertisement

Blood Group Genotyping

  • Jensyn K. Cone Sullivan
    Affiliations
    Department of Pathology, The Neely Cell Therapy Center, Tufts Medical Center, 800 Washington Street, #826, Boston, MA 02111, USA

    Tufts University School of Medicine, Boston, MA, USA
    Search for articles by this author
  • Nicholas Gleadall
    Affiliations
    Department of Haematology, University of Cambridge, University of Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
    Search for articles by this author
  • William J. Lane
    Correspondence
    Corresponding author. Department of Pathology, Brigham and Women’s Hospital, Hale Building for Transformative Medicine, Room 8002L, 60 Fenwood Road, Boston, MA 02115.
    Affiliations
    Department of Pathology, Brigham and Women’s Hospital, Hale Building for Transformative Medicine, Room 8002L, 60 Fenwood Road, Boston, MA 02115, USA

    Harvard Medical School, Boston, MA, USA
    Search for articles by this author
      Erythrocyte antigens-surface structures capable of eliciting specific, humoral immune responses-were historically characterized by antibody-based methodologies, occasionally precluding accurate phenotyping and compatible blood transfusion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Table of blood group systems. ISBT.
        (Available at:) (Accessed March 16, 2021)
        • Hendrickson J.E.
        • Tormey C.A.
        • Shaz B.H.
        Red blood cell alloimmunization mitigation strategies.
        Transfus Med Rev. 2014; 28: 137-144
        • Tormey C.A.
        • Stack G.
        The persistence and evanescence of blood group alloantibodies in men.
        Transfusion. 2009; 49: 505-512
        • Schonewille H.
        • van de Watering L.M.G.
        • Brand A.
        Additional red blood cell alloantibodies after blood transfusions in a nonhematologic alloimmunized patient cohort: is it time to take precautionary measures?.
        Transfusion. 2006; 46: 630-635
        • Lane W.J.
        • Westhoff C.M.
        • Gleadall N.S.
        • et al.
        Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study.
        Lancet Haematol. 2018; 5: e241-e251
        • Daniels G.
        Human blood groups.
        John Wiley & Sons, Hoboken, NJ2008
        • Westhoff C.M.
        Blood group genotyping.
        Blood. 2019; 133: 1814-1820
        • Lane W.J.
        • Westhoff C.M.
        • Uy J.M.
        • et al.
        Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle.
        Transfusion. 2016; 56: 743-754
      2. Genome browser FAQ.
        (Available at:) (Accessed March 18, 2021)
        • Patnaik S.K.
        • Helmberg W.
        • Blumenfeld O.O.
        BGMUT database of allelic variants of genes encoding human blood group antigens.
        Transfus Med Hemother. 2014; 41: 346-351
        • Patnaik S.K.
        • Helmberg W.
        • Blumenfeld O.O.
        BGMUT: NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems.
        Nucleic Acids Res. 2012; 40: D1023-D1029
      3. Index of/pub/mhc/rbc/Final archive.
        (Available at:) (Accessed March 21, 2021)
        • Wagner F.F.
        • Flegel W.A.
        The rhesus site.
        Transfus Med Hemother. 2014; 41: 357-363
        • Reid M.E.
        • Lomas-Francis C.
        • Olsson M.L.
        The blood group antigen factsBook.
        Academic Press, Hoboken, NJ2012
        • Möller M.
        • Jöud M.
        • Storry J.R.
        • et al.
        Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project.
        Blood Adv. 2016; 1: 240-249
        • 1000 Genomes Project Consortium
        • Auton A.
        • Brooks L.D.
        • et al.
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74
      4. [No title].
        (Available at:) (Accessed March 18, 2021)
        • Tournamille C.
        • Colin Y.
        • Cartron J.P.
        • et al.
        Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy–negative individuals.
        Nat Genet. 1995; 10: 224-228
        • Booth P.B.
        • Serjeantson S.
        • Woodfield D.G.
        • et al.
        Selective depression of blood group antigens associated with hereditary ovalocytosis among melanesians.
        Vox Sang. 1977; 32: 99-110
        • Ogasawara K.
        • Yabe R.
        • Uchikawa M.
        • et al.
        Molecular genetic analysis of variant phenotypes of the ABO blood group system.
        Blood. 1996; 88: 2732-2737
        • Olsson M.L.
        • Irshaid N.M.
        • Hosseini-Maaf B.
        • et al.
        Genomic analysis of clinical samples with serologic ABO blood grouping discrepancies: identification of 15 novel A and B subgroup alleles.
        Blood. 2001; 98: 1585-1593
        • Seltsam A.
        • Wagner F.F.
        • Grüger D.
        • et al.
        Weak blood group B phenotypes may be caused by variations in the CCAAT-binding factor/NF-Y enhancer region of the ABO gene.
        Transfusion. 2007; 47: 2330-2335
        • Yamamoto F.-I.
        • McNeill P.D.
        • Hakomori S.-I.
        Human histo-blood group A2 transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal.
        Biochem Biophys Res Commun. 1992; 187: 366-374
        • Hosseini-Maaf B.
        • Smart E.
        • Chester M.A.
        • et al.
        The Abantu phenotype in the ABO blood group system is due to a splice-site mutation in a hybrid between a new O1-like allelic lineage and the A2 allele.
        Vox Sanguinis. 2005; 88: 256-264
        • Wagner F.F.
        • Frohmajer A.
        • Flegel W.A.
        RHD positive haplotypes in D negative Europeans.
        BMC Genet. 2001; 2: 10
        • Richard M.
        • Perreault J.
        • Constanzo-Yanez J.
        • et al.
        A newDELvariant caused by exon 8 deletion.
        Transfusion. 2007; 47: 852-857
        • Olsson M.L.
        • Chester M.A.
        A rapid and simple ABO genotype screening method using a novel B/O2 versus A/O2 discriminating nucleotide substitution at the ABO locus.
        Vox Sang. 1995; 69: 242-247
        • Lane W.J.
        • Gleadall N.S.
        • Aeschlimann J.
        • et al.
        Multiple GYPB gene deletions associated with the U- phenotype in those of African ancestry.
        Transfusion. 2020; 60: 1294-1307
        • Suzuki K.
        • Iwata M.
        • Tsuji H.
        • et al.
        A de novo recombination in the ABO blood group gene and evidence for the occurrence of recombination products.
        Hum Genet. 1997; 99
        • Landsteiner K.
        On agglutination of normal human blood.
        Transfusion. 1961; 1: 5-8
        • Sanger F.
        • Nicklen S.
        • Coulson A.R.
        DNA sequencing with chain-terminating inhibitors.
        Proc Natl Acad Sci U S A. 1977; 74: 5463-5467
        • Yamamoto F.
        • Clausen H.
        • White T.
        • et al.
        Molecular genetic basis of the histo-blood group ABO system.
        Nature. 1990; 345: 229-233
        • Lander E.S.
        • Linton L.M.
        • Birren B.
        • et al.
        Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921
        • Venter J.C.
        • Adams M.D.
        • Myers E.W.
        • et al.
        The sequence of the human genome.
        Science. 2001; 291: 1304-1351
        • Stabentheiner S.
        • Danzer M.
        • Niklas N.
        • et al.
        Overcoming methodical limits of standard RHD genotyping by next-generation sequencing.
        Vox Sang. 2011; 100: 381-388
        • Giollo M.
        • Minervini G.
        • Scalzotto M.
        • et al.
        BOOGIE: predicting blood groups from high throughput sequencing data.
        PLoS One. 2015; 10: e0124579
        • Montemayor-Garcia C.
        • Karagianni P.
        • Stiles D.A.
        • et al.
        Genomic coordinates and continental distribution of 120 blood group variants reported by the 1000 Genomes Project.
        Transfusion. 2018; 58: 2693-2704
        • Lane W.J.
        • Vege S.
        • Mah H.H.
        • et al.
        Automated typing of red blood cell and platelet antigens from whole exome sequences.
        Transfusion. 2019; https://doi.org/10.1111/trf.15473
        • Pirooznia M.
        • Goes F.S.
        • Zandi P.P.
        Whole-genome CNV analysis: advances in computational approaches.
        Front Genet. 2015; 6: 138
        • Baronas J.
        • Westhoff C.M.
        • Vege S.
        • et al.
        RHD zygosity determination from whole genome sequencing data.
        J Blood Disord Transfus. 2016; 7https://doi.org/10.4172/2155-9864.1000365
        • Wheeler M.M.
        • Lannert K.W.
        • Huston H.
        • et al.
        Genomic characterization of the RH locus detects complex and novel structural variation in multi-ethnic cohorts.
        Genet Med. 2019; 21: 477-486
        • Chang T.-C.
        • Haupfear K.M.
        • Yu J.
        • et al.
        A novel algorithm comprehensively characterizes human RH genes using whole-genome sequencing data.
        Blood Adv. 2020; 4: 4347-4357
        • Chou S.T.
        • Flanagan J.M.
        • Vege S.
        • et al.
        Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia.
        Blood Adv. 2017; 1: 1414-1422
        • Lane W.J.
        • Aguad M.
        • Smeland-Wagman R.
        • et al.
        A whole genome approach for discovering the genetic basis of blood group antigens: independent confirmation for P1 and Xga.
        Transfusion. 2019; 59: 908-915
        • Westman J.S.
        • Stenfelt L.
        • Vidovic K.
        • et al.
        Allele-selective RUNX1 binding regulates P1 blood group status by transcriptional control of A4GALT.
        Blood. 2018; 131: 1611-1616
        • Möller M.
        • Lee Y.Q.
        • Vidovic K.
        • et al.
        Disruption of a GATA1-binding motif upstream of XG/PBDX abolishes Xga expression and resolves the Xg blood group system.
        Blood. 2018; 132: 334-338
      5. Storage and computation requirements.
        (Available at:) (Accessed March 29, 2021)
        • Orzinska A.
        • Guz K.
        • Brojer E.
        Potential of next-generation sequencing to match blood group antigens for transfusion.
        IJCTM. 2019; 7: 11-22
        • Lang K.
        • Wagner I.
        • Schöne B.
        • et al.
        ABO allele-level frequency estimation based on population-scale genotyping by next generation sequencing.
        BMC Genomics. 2016; 17: 374
        • Wu P.C.
        • Lin Y.-H.
        • Tsai L.F.
        • et al.
        ABO genotyping with next-generation sequencing to resolve heterogeneity in donors with serology discrepancies.
        Transfusion. 2018; 58: 2232-2242
        • International HapMap Consortium
        The international HapMap project.
        Nature. 2003; 426: 789-796
        • Wellcome Trust Case Control Consortium
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-678
        • Bycroft C.
        • Freeman C.
        • Petkova D.
        • et al.
        The UK Biobank resource with deep phenotyping and genomic data.
        Nature. 2018; 562: 203-209
        • Veldhuisen B.
        • van der Schoot C.E.
        • de Haas M.
        Blood group genotyping: from patient to high-throughput donor screening.
        Vox Sang. 2009; 97: 198-206
        • Berry N.K.
        • Scott R.J.
        • Rowlings P.
        • et al.
        Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies.
        Crit Rev Oncol Hematol. 2019; 142: 58-67
        • Rabbee N.
        • Speed T.P.
        A genotype calling algorithm for affymetrix SNP arrays.
        Bioinformatics. 2006; 22: 7-12
        • Hashmi G.
        • Shariff T.
        • Seul M.
        • et al.
        A flexible array format for large-scale, rapid blood group DNA typing.
        Transfusion. 2005; 45: 680-688
        • Beiboer S.H.W.
        • Wieringa-Jelsma T.
        • Maaskant-Van Wijk P.A.
        • et al.
        Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization.
        Transfusion. 2005; 45: 667-679
      6. Company Profiles: DNAnexus Inc. Available at: https://platform.dnanexus.com/app/RHtyper. Accessed August 13, 2021.

      7. HLA Typing.
        (Available at:) (Accessed March 17, 2021)
      8. Monotype ABOTM.
        (Available at:) (Accessed March 17, 2021)
        • Möller M.
        • Hellberg Å.
        • Olsson M.L.
        Thorough analysis of unorthodox ABO deletions called by the 1000 Genomes project.
        Vox Sang. 2018; 113: 185-197
        • Schoeman E.M.
        • Roulis E.V.
        • Liew Y.-W.
        • et al.
        Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting.
        Transfusion. 2018; 58: 284-293
        • Sano R.
        • Nakajima T.
        • Takahashi K.
        • et al.
        Expression of ABO blood-group genes is dependent upon an erythroid cell-specific regulatory element that is deleted in persons with the B(m) phenotype.
        Blood. 2012; 119: 5301-5310
        • Schoeman E.M.
        • Lopez G.H.
        • McGowan E.C.
        • et al.
        Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping: SEQUENCING FOR BLOOD GROUP GENOTYPING.
        Transfusion. 2017; 57: 1078-1088
      9. RBC-FluoGeneNX ABO plus.
        (Published May 12, 2020.Available at:) (Accessed March 17, 2021)
        • Lo Y.M.
        • Hjelm N.M.
        • Fidler C.
        • et al.
        Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma.
        N Engl J Med. 1998; 339: 1734-1738
        • Rieneck K.
        • Bak M.
        • Jønson L.
        • et al.
        Next-generation sequencing: proof of concept for antenatal prediction of the fetal Kell blood group phenotype from cell-free fetal DNA in maternal plasma.
        Transfusion. 2013; https://doi.org/10.1111/trf.12172
        • Orzińska A.
        • Guz K.
        • Mikula M.
        • et al.
        Prediction of fetal blood group and platelet antigens from maternal plasma using next-generation sequencing.
        Transfusion. 2019; 59: 1102-1107
        • Montemayor-Garcia C.
        • Westhoff C.M.
        The “next generation” reference laboratory?.
        Transfusion. 2018; 58: 277-279
        • Fichou Y.
        • Le Maréchal C.
        • Bryckaert L.
        • et al.
        Variant screening of the RHD gene in a large cohort of subjects with D phenotype ambiguity: report of 17 novel rare alleles.
        Transfusion. 2012; 52: 759-764
        • Wu S.-C.
        • Arthur C.M.
        • Wang J.
        • et al.
        The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A.
        Blood Adv. 2021; 5: 1305-1309
        • Rowe J.A.
        • Opi D.H.
        • Williams T.N.
        Blood groups and malaria: fresh insights into pathogenesis and identification of targets for intervention.
        Curr Opin Hematol. 2009; 16: 480-487
      10. E T. Red Cell Immunogenetics and Blood Group Terminology.
        (Available at:) (Accessed March 18, 2021)
        • Sims D.
        • Sudbery I.
        • Ilott N.E.
        • et al.
        Sequencing depth and coverage: key considerations in genomic analyses.
        Nat Rev Genet. 2014; 15: 121-132
      11. Phased sequencing.
        (Available at:) (Accessed March 21, 2021)