Advertisement

The Role of the Human Gutome on Chronic Disease

A Review of the Microbiome and Nutrigenomics
      The microbiome and optimal nutrition vary among individuals and may be used along with pharmacogenomics to further improve individualized treatment strategies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dimitrov D.V.
        The human gutome: nutrigenomics of the host–microbiome interactions.
        Omi A J Integr Biol. 2011; 15: 419-430
        • Ferguson J.F.
        • Allayee H.
        • Gerszten R.E.
        • et al.
        Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment.
        Circ Cardiovasc Genet. 2016; 9 (Available at: https://www.ahajournals.org/doi/10.1161/HCG.0000000000000030.): 291-313
        • Peña-Romero A.C.
        • Navas-Carrillo D.
        • Marín F.
        • et al.
        The future of nutrition: nutrigenomics and nutrigenetics in obesity and cardiovascular diseases.
        Crit Rev Food Sci Nutr. 2018; 58: 3030-3041
        • Cresci G.A.M.
        • Izzo K.
        Gut microbiome.
        in: Adult short bowel syndrome. Elsevier, 2019: 45-54https://doi.org/10.1016/B978-0-12-814330-8.00004-4
        • Ratsika A.
        • Codagnone M.C.
        • O’Mahony S.
        • et al.
        Priming for life: early life nutrition and the microbiota-gut-brain axis.
        Nutrients. 2021; 13https://doi.org/10.3390/nu13020423
        • Petra A.I.
        • Panagiotidou S.
        • Hatziagelaki E.
        • et al.
        Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation.
        Clin Ther. 2015; 37: 984-995
        • Yamamoto E.A.
        • Jørgensen T.N.
        Relationships between vitamin D, gut microbiome, and systemic autoimmunity.
        Front Immunol. 2019; 10: 3141
        • Yang Q.
        • Liang Q.
        • Balakrishnan B.
        • et al.
        Role of dietary nutrients in the modulation of gut microbiota: a narrative review.
        Nutrients. 2020; 12
        • Bäumler A.J.
        • Sperandio V.
        Interactions between the microbiota and pathogenic bacteria in the gut.
        Nature. 2016; 535: 85-93
        • Knoop K.A.
        • Holtz L.R.
        • Newberry R.D.
        Inherited nongenetic influences on the gut microbiome and immune system.
        Birth Defects Res. 2018; 110: 1494-1503
        • Prince A.L.
        • Chu D.M.
        • Seferovic M.D.
        • et al.
        The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome.
        Cold Spring Harb Perspect Med. 2015; 5https://doi.org/10.1101/cshperspect.a023051
        • Dunlop A.L.
        • Mulle J.G.
        • Ferranti E.P.
        • et al.
        Maternal microbiome and pregnancy outcomes that impact infant health: a review.
        Adv Neonatal Care. 2015; 15: 377-385
        • Yao Y.
        • Cai X.
        • Fei W.
        • et al.
        Regulating gut microbiome: therapeutic strategy for rheumatoid arthritis during pregnancy and lactation.
        Front Pharmacol. 2020; 11: 594042
        • Gominak S.C.
        Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity.
        Med Hypotheses. 2016; 94: 103-107
        • Marchesi J.R.
        • Adams D.H.
        • Fava F.
        • et al.
        The gut microbiota and host health: a new clinical frontier.
        Gut. 2016; 65: 330-339
        • Khan I.
        • Ullah N.
        • Zha L.
        • et al.
        Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome.
        Pathog (Basel, Switzerland). 2019; 8https://doi.org/10.3390/pathogens8030126
        • Salem F.
        • Kindt N.
        • Marchesi J.R.
        • et al.
        Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences.
        United Eur Gastroenterol J. 2019; 7: 1008-1032
        • Wilson I.D.
        • Nicholson J.K.
        Gut microbiome interactions with drug metabolism, efficacy, and toxicity.
        Transl Res. 2017; 179: 204-222
        • Tuteja S.
        • Ferguson J.F.
        Gut microbiome and response to cardiovascular drugs.
        Circ Genomic Precis Med. 2019; 12https://doi.org/10.1161/CIRCGEN.119.002314
      1. Prevention C for DC and. Adult obesity facts. Overweight and obesity.
        (Available at:) (Accessed March 30, 2021)
        • Saltiel A.R.
        • Olefsky J.M.
        Inflammatory mechanisms linking obesity and metabolic disease.
        J Clin Invest. 2017; 127: 1-4
        • Organization W.H.
        Diabetes. Health topics.
        (Available at:) (Accessed March 30, 2021)
        • Ortega Á.
        • Berná G.
        • Rojas A.
        • et al.
        Gene-diet interactions in type 2 diabetes: the chicken and egg debate.
        Int J Mol Sci. 2017; 18https://doi.org/10.3390/ijms18061188
        • Virani S.S.
        • Alonso A.
        • Aparicio H.J.
        • et al.
        Heart disease and stroke statistics—2021 update.
        Circulation. 2021; 143https://doi.org/10.1161/CIR.0000000000000950
        • Barrea L.
        • Annunziata G.
        • Bordoni L.
        • et al.
        Nutrigenetics—personalized nutrition in obesity and cardiovascular diseases.
        Int J Obes Suppl. 2020; 10: 1-13
        • Hickey S.E.
        • Curry C.J.
        • Toriello H.V.
        ACMG practice guideline: lack of evidence for MTHFR polymorphism testing.
        Genet Med. 2013; 15: 153-156
        • Nutrigenomics M.M.
        The genome – food interface.
        Environ Health Perspect. 2007; 115: A582-A589
        • Esposito K.
        • Chiodini P.
        • Colao A.
        • et al.
        Metabolic syndrome and risk of cancer: a systematic review and meta-analysis.
        Diabetes Care. 2012; 35: 2402-2411
      2. ACS. American Cancer Society.
        (Available at:) (Accessed March 30, 2021)
        • Publishing H.H.
        Cancer and diet: what’s the connection? Harvard Men’s Health Watch.
        (Available at:) (Accessed March 30, 2021)
        • Anderson J.J.
        • Darwis N.D.M.
        • Mackay D.F.
        • et al.
        Red and processed meat consumption and breast cancer: UK Biobank cohort study and meta-analysis.
        Eur J Cancer. 2018; 90: 73-82
        • Sieri S.
        • Krogh V.
        Dietary glycemic index, glycemic load and cancer: an overview of the literature.
        Nutr Metab Cardiovasc Dis. 2017; 27: 18-31
        • Deng X.
        • Su R.
        • Stanford S.
        • et al.
        Critical enzymatic functions of FTO in obesity and cancer.
        Front Endocrinol (Lausanne). 2018; 9https://doi.org/10.3389/fendo.2018.00396
        • de Toro-Martín J.
        • Arsenault B.J.
        • Després J.P.
        • et al.
        Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome.
        Nutrients. 2017; 9: 1-28
        • Kobayashi J.
        Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: a review.
        Nitric Oxide Biol Chem. 2018; 73: 66-73
        • Bruno E.
        • Manoukian S.
        • Venturelli E.
        • et al.
        Adherence to Mediterranean diet and metabolic syndrome in BRCA mutation carriers.
        Integr Cancer Ther. 2018; 17: 153-160
        • Meslier V.
        • Laiola M.
        • Roager H.M.
        • et al.
        Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake.
        Gut. 2020; 69: 1258-1268
        • Liu H.
        • Wang J.
        • He T.
        • et al.
        Butyrate: a double-edged sword for health?.
        Adv Nutr. 2018; 9: 21-29
        • McNabney S.M.
        • Henagan T.M.
        Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance.
        Nutrients. 2017; 9https://doi.org/10.3390/nu9121348
        • Fasanelli F.
        • Giraudo M.T.
        • Vineis P.
        • et al.
        DNA methylation, colon cancer and Mediterranean diet: results from the EPIC-Italy cohort.
        Epigenetics. 2019; 14: 977-988
        • Castelló A.
        • Pollán M.
        • Buijsse B.
        • et al.
        Spanish Mediterranean diet and other dietary patterns and breast cancer risk: case–control EpiGEICAM study.
        Br J Cancer. 2014; 111: 1454-1462
        • Kiechle M.
        • Dukatz R.
        • Yahiaoui-Doktor M.
        • et al.
        Feasibility of structured endurance training and Mediterranean diet in BRCA1 and BRCA2 mutation carriers - an interventional randomized controlled multicenter trial (LIBRE-1).
        BMC Cancer. 2017; 17: 752
        • Bruno E.
        • Oliverio A.
        • Paradiso A.V.
        • et al.
        A Mediterranean dietary intervention in female carriers of BRCA mutations: results from an Italian prospective randomized controlled trial.
        Cancers (Basel). 2020; 12https://doi.org/10.3390/cancers12123732
        • Özkul C.
        • Yalınay M.
        • Karakan T.
        Islamic fasting leads to an increased abundance of Akkermansia muciniphila and Bacteroides fragilis group: a preliminary study on intermittent fasting.
        Turk J Gastroenterol. 2019; 30: 1030-1035
        • Ou Z.
        • Deng L.
        • Lu Z.
        • et al.
        Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease.
        Nutr Diabetes. 2020; 10: 12
        • Haran J.P.
        • Bhattarai S.K.
        • Foley S.E.
        • et al.
        Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway.
        MBio. 2019; 10https://doi.org/10.1128/mBio.00632-19
        • Inacio P.
        Gut microbiome may help slow ALS progression, study indicates. ALS News Today.
        (Available at:) (Accessed December 3, 2021)
        • Bian X.
        • Wu W.
        • Yang L.
        • et al.
        Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice.
        Front Microbiol. 2019; 10: 2259
        • Weir T.L.
        • Manter D.K.
        • Sheflin A.M.
        • et al.
        Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults.
        PLoS One. 2013; 8: e70803
        • Chmurzynska A.
        • Muzsik A.
        • Krzyżanowska-Jankowska P.
        • et al.
        PPARG and FTO polymorphism can modulate the outcomes of a central European diet and a Mediterranean diet in centrally obese postmenopausal women.
        Nutr Res. 2019; 69: 94-100
        • Di Renzo L.
        • Rizzo M.
        • Iacopino L.
        • et al.
        Body composition phenotype: Italian Mediterranean diet and C677T MTHFR gene polymorphism interaction.
        Eur Rev Med Pharmacol Sci. 2013; 17 (Available at:): 2555-2565
        • Viana S.D.
        • Nunes S.
        • Reis F.
        ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - role of gut microbiota dysbiosis.
        Ageing Res Rev. 2020; 62: 101123
        • Xu K.
        • Cai H.
        • Shen Y.
        • et al.
        [Management of corona virus disease-19 (COVID-19): the Zhejiang experience].
        Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020; 49: 147-157
        • Kuo C.-L.
        • Pilling L.C.
        • Atkins J.L.
        • et al.
        ApoE e4e4 genotype and mortality with COVID-19 in UK Biobank.
        J Gerontol A Biol Sci Med Sci. 2020; 75: 1801-1803
        • Kwa M.
        • Plottel C.S.
        • Blaser M.J.
        • et al.
        The intestinal microbiome and estrogen receptor-positive female breast cancer.
        J Natl Cancer Inst. 2016; 108https://doi.org/10.1093/jnci/djw029
        • Baker J.M.
        • Al-Nakkash L.
        • Herbst-Kralovetz M.M.
        Estrogen–gut microbiome axis: physiological and clinical implications.
        Maturitas. 2017; 103: 45-53
        • Miro Estruch I.
        • de Haan L.H.J.
        • Melchers D.
        • et al.
        The effects of all-trans retinoic acid on estrogen receptor signaling in the estrogen-sensitive MCF/BUS subline.
        J Recept Signal Transduct Res. 2018; 38: 112-121
        • Bak M.J.
        • Das Gupta S.
        • Wahler J.
        • et al.
        Inhibitory effects of γ- and δ-tocopherols on estrogen-stimulated breast cancer in vitro and in vivo.
        Cancer Prev Res (Phila). 2017; 10: 188-197
        • Tam K.-W.
        • Ho C.-T.
        • Lee W.-J.
        • et al.
        Alteration of α-tocopherol-associated protein (TAP) expression in human breast epithelial cells during breast cancer development.
        Food Chem. 2013; 138: 1015-1021
        • Koay D.C.
        • Zerillo C.
        • Narayan M.
        • et al.
        Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast cancer cells: induction of apoptosis by retinoid/trastuzumab combinations.
        Breast Cancer Res. 2010; 12: R62
        • Tiwary R.
        • Yu W.
        • Sanders B.G.
        • et al.
        α-TEA cooperates with chemotherapeutic agents to induce apoptosis of p53 mutant, triple-negative human breast cancer cells via activating p73.
        Breast Cancer Res. 2011; 13: R1
        • Corella D.
        • Peloso G.
        • Arnett D.K.
        • et al.
        APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations.
        Arch Intern Med. 2009; 169: 1897-1906
        • Domínguez-Reyes T.
        • Astudillo-López C.C.
        • Salgado-Goytia L.
        • et al.
        Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects.
        Lipids Health Dis. 2015; 14: 106
        • Koopal C.
        • Van Der Graaf Y.
        • Asselbergs F.W.
        • et al.
        Influence of APOE-2 genotype on the relation between adiposity and plasma lipid levels in patients with vascular disease.
        Int J Obes. 2015; 39: 265-269
        • Garaulet M.
        • Corbalán M.D.
        • Madrid J.A.
        • et al.
        CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet.
        Int J Obes (Lond). 2010; 34: 516-523
        • Scuteri A.
        • Sanna S.
        • Chen W.-M.
        • et al.
        Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits.
        Plos Genet. 2007; 3: e115
        • Qi Q.
        • Kilpeläinen T.O.
        • Downer M.K.
        • et al.
        FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals.
        Hum Mol Genet. 2014; 23: 6961-6972
        • Duicu C.
        • Mărginean C.O.
        • Voidăzan S.
        • et al.
        FTO rs 9939609 SNP is associated with adiponectin and leptin levels and the risk of obesity in a cohort of Romanian children population.
        Medicine (Baltimore). 2016; 95: e3709
        • Kaulfers A.-M.
        • Deka R.
        • Dolan L.
        • et al.
        Association of INSIG2 polymorphism with overweight and LDL in children.
        PLoS One. 2015; 10: e0116340
        • Heid I.M.
        • Huth C.
        • Loos R.J.F.
        • et al.
        Meta-analysis of the INSIG2 association with obesity including 74,345 individuals: does heterogeneity of estimates relate to study design?.
        Plos Genet. 2009; 5: e1000694
        • Martínez J.A.
        Perspectives on personalized nutrition for obesity.
        J Nutrigenet Nutrigenomics. 2014; 7: 6-8
        • Di Renzo L.
        • Gualtieri P.
        • Romano L.
        • et al.
        Role of personalized nutrition in chronic-degenerative diseases.
        Nutrients. 2019; 11: 1-24
        • Berná G.
        • Oliveras-López M.J.
        • Jurado-Ruíz E.
        • et al.
        Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis.
        Nutrients. 2014; 6: 5338-5369
        • Corella D.
        • Asensio E.M.
        • Coltell O.
        • et al.
        CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial.
        Cardiovasc Diabetol. 2016; 15: 4
        • Dedoussis G.V.Z.
        • Kaliora A.C.
        • Panagiotakos D.B.
        Genes, diet and type 2 diabetes mellitus: a review.
        Rev Diabet Stud. 2007; 4: 13-24
        • Ali O.
        Genetics of type 2 diabetes.
        World J Diabetes. 2013; 4: 114-123
        • Corella D.
        • Qi L.
        • Sorlí J.V.
        • et al.
        Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction.
        J Clin Endocrinol Metab. 2005; 90: 5121-5126
        • Engler M.B.
        Nutrigenomics in cardiovascular disease: implications for the future.
        Prog Cardiovasc Nurs. 2009; 24: 190-195
        • Iacoviello L.
        • Santimone I.
        • Latella M.C.
        • et al.
        Nutrigenomics: a case for the common soil between cardiovascular disease and cancer.
        Genes Nutr. 2008; 3: 19-24
        • Ordovas J.M.
        • Kaput J.
        • Corella D.
        Nutrition in the genomics era: cardiovascular disease risk and the Mediterranean diet.
        Mol Nutr Food Res. 2007; 51: 1293-1299
        • Do R.
        • Xie C.
        • Zhang X.
        • et al.
        The effect of chromosome 9p21 variants on cardiovascular disease may be modified by dietary intake: evidence from a case/control and a prospective study.
        Plos Med. 2011; 8https://doi.org/10.1371/journal.pmed.1001106
        • Aleyasin S.A.
        • Navidi T.
        • Davoudi S.
        Association between rs10757274 and rs2383206 SNPs as genetic risk factors in Iranian patients with coronary artery disease.
        J Tehran Heart Cent. 2017; 12 (Available at:): 114-118
        • Hannou S.A.
        • Wouters K.
        • Paumelle R.
        • et al.
        Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs?.
        Trends Endocrinol Metab. 2015; 26: 176-184
        • Niemiec P.
        • Gorczynska-Kosiorz S.
        • Iwanicki T.
        • et al.
        The rs10757278 polymorphism of the 9p21.3 locus is associated with premature coronary artery disease in Polish patients.
        Genet Test Mol Biomarkers. 2012; 16: 1080-1085
        • Aberle J.
        • Hopfer I.
        • Beil F.U.
        • et al.
        Association of peroxisome proliferator-activated receptor delta +294T/C with body mass index and interaction with peroxisome proliferator-activated receptor alpha L162V.
        Int J Obes (Lond). 2006; 30: 1709-1713
        • Zhou Y.
        • Luo G.
        Apolipoproteins, as the carrier proteins for lipids, are involved in the development of breast cancer.
        Clin Transl Oncol. 2020; 22: 1952-1962
        • Pirro M.
        • Ricciuti B.
        • Rader D.J.
        • et al.
        High density lipoprotein cholesterol and cancer: marker or causative?.
        Prog Lipid Res. 2018; 71: 54-69
        • Caramujo-Balseiro S.
        • Faro C.
        • Carvalho L.
        Metabolic pathways in sporadic colorectal carcinogenesis: a new proposal.
        Med Hypotheses. 2021; 148: 110512
        • Slattery M.L.
        • Sweeney C.
        • Murtaugh M.
        • et al.
        Associations between apoE genotype and colon and rectal cancer.
        Carcinogenesis. 2005; 26: 1422-1429
        • Moysich K.B.
        • Freudenheim J.L.
        • Baker J.A.
        • et al.
        Apolipoprotein E genetic polymorphism, serum lipoproteins, and breast cancer risk.
        Mol Carcinog. 2000; 27: 2-9
        • Porrata-Doria T.
        • Matta J.L.
        • Acevedo S.F.
        Apolipoprotein E allelic frequency altered in women with early-onset breast cancer.
        Breast Cancer (Auckl). 2010; 4 (Available at:): 43-48
        • Riscuta G.
        • Dumitrescu R.G.
        Nutrigenomics: implications for breast and colon cancer prevention.
        Methods Mol Biol. 2012; : 343-358https://doi.org/10.1007/978-1-61779-612-8_22
        • Sellami M.
        • Bragazzi N.L.
        Nutrigenomics and breast cancer: state-of-art, future perspectives and insights for prevention.
        Nutrients. 2020; 12: 512
        • Liu X.
        • Liu L.
        • Dong Z.
        • et al.
        Expression patterns and prognostic value of m6A-related genes in colorectal cancer.
        Am J Transl Res. 2019; 11 (Available at:): 3972-3991
        • Yamaji T.
        • Iwasaki M.
        • Sawada N.
        • et al.
        Fat mass and obesity-associated gene polymorphisms, pre-diagnostic plasma adipokine levels and the risk of colorectal cancer: the Japan Public Health Center-based Prospective Study.
        PLoS One. 2020; 15: e0229005
        • Davis C.D.
        Nutrigenomics and the prevention of colon cancer.
        Pharmacogenomics. 2007; 8: 121-124
        • Levine A.J.
        • Figueiredo J.C.
        • Lee W.
        • et al.
        Genetic variability in the MTHFR gene and colorectal cancer risk using the Colorectal Cancer Family Registry.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 89-100
        • Cecchin E.
        • Perrone G.
        • Nobili S.
        • et al.
        MTHFR-1298 A>C (rs1801131) is a predictor of survival in two cohorts of stage II/III colorectal cancer patients treated with adjuvant fluoropyrimidine chemotherapy with or without oxaliplatin.
        Pharmacogenomics J. 2015; 15: 219-225
        • Ogino S.
        • Shima K.
        • Baba Y.
        • et al.
        Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARgamma) is associated with good prognosis.
        Gastroenterology. 2009; 136: 1242-1250
        • Girnun G.
        PPARG: a new independent marker for colorectal cancer survival.
        Gastroenterology. 2009; 136: 1157-1160
        • Papadaki I.
        • Mylona E.
        • Giannopoulou I.
        • et al.
        PPARgamma expression in breast cancer: clinical value and correlation with ERbeta.
        Histopathology. 2005; 46: 37-42