Advertisement

HLA Typing by Next-Generation Sequencing

Lessons Learned and Future Applications
  • Caleb Cornaby
    Affiliations
    McLendon Clinical Laboratories, UNC Hospitals, 101 Manning Drive, Chapel Hill, NC 27514, USA
    Search for articles by this author
  • Eric T. Weimer
    Correspondence
    Corresponding author. 101 Manning Drive, Room 1032 East Wing, Chapel Hill, NC 27514.
    Affiliations
    McLendon Clinical Laboratories, UNC Hospitals, 101 Manning Drive, Chapel Hill, NC 27514, USA

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27514, USA
    Search for articles by this author
      HLA typing by molecular methods have evolved from sequence-specific oligonucleotide probes to next-generation sequencing (NGS).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hosomichi K.
        • Shiina T.
        • Tajima A.
        • et al.
        The impact of next-generation sequencing technologies on HLA research.
        J Hum Genet. 2015; 60: 665-673
        • Horton R.
        • Wilming L.
        • Rand V.
        • et al.
        Gene map of the extended human MHC.
        Nat Rev Genet. 2004; 5: 889-899
        • Crux N.B.
        • Elahi S.
        Human Leukocyte Antigen (HLA) and immune regulation: How do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections?.
        Front Immunol. 2017; 8: 832
        • Reeves E.
        • James E.
        Antigen processing and immune regulation in the response to tumours.
        Immunology. 2017; 150: 16-24
        • Dendrou C.A.
        • Petersen J.
        • Rossjohn J.
        • et al.
        HLA variation and disease.
        Nat Rev Immunol. 2018; 18https://doi.org/10.1038/nri.2017.143
        • Montgomery R.A.
        • Tatapudi V.S.
        • Leffell M.S.
        • et al.
        HLA in transplantation.
        Nat Rev Nephrol. 2018; 14https://doi.org/10.1038/s41581-018-0039-x
        • Miles J.J.
        • Mccluskey J.
        • Rossjohn J.
        • et al.
        Understanding the complexity and malleability of T-cell recognition.
        Immunol Cell Biol. 2015; 93: 433-441
        • Kulski J.K.
        • Shiina T.
        • Inoko H.
        • et al.
        An update of the HLA genomic region, locus information and disease associations: 2004.
        Tissue Antigens. 2019; 64: 631-649
        • Li J.
        • Smith A.
        • Crouch S.
        • et al.
        Estimating the prevalence of hematological malignancies and precursor conditions using data from Haematological Malignancy Research Network (HMRN).
        Cancer Causes Control. 2016; 27: 1019-1026
        • Edgerly C.H.
        • Weimer E.T.
        The past, present, and future of HLA typing in transplantation.
        Methods Mol Biol. 1802; : 1-10
        • Duquesnoy R.J.
        • Kamoun M.
        • Baxter-Lowe L.A.
        • et al.
        Should HLA mismatch acceptability for sensitized transplant candidates be determined at the high-resolution rather than the antigen level?.
        Am J Transplant. 2015; 15: 923-930
        • Trowsdale J.
        • Knight J.C.
        Major histocompatibility complex genomics and human disease.
        Annu Rev Genomics Hum Genet. 2013; 14: 301-323
        • Fan W.-L.
        • Shiao M.-S.
        • Hui R.C.-Y.
        • et al.
        Review Article HLA association with drug-induced adverse reactions.
        J Immunol Res. 2017; https://doi.org/10.1155/2017/3186328
        • Kawai T.
        • Cosimi A.B.
        • Spitzer T.R.
        • et al.
        HLA-mismatched renal transplantation without maintenance immunosuppression from the transplantation unit.
        N Engl J Med. 2008; 358: 353-361
        • Kamburova E.G.
        • Wisse B.W.
        • Joosten I.
        • et al.
        Differential effects of donor-specific HLA antibodies in living versus deceased donor transplant.
        Am J Transplant. 2018; 18: 2274-2284
        • Althaf M.M.
        • El Kossi M.
        • Jin J.K.
        • et al.
        Human leukocyte antigen typing and crossmatch: A comprehensive review.
        World J Transplant. 2017; 7: 339-348
        • Bidwell J.L.
        • Bidwell E.A.
        • Savage D.A.
        • et al.
        A DNA-RFLP typing system that positively identifies serologically well-defined and ill-defined HLA-DR and DQ alleles, including DRw10.
        Transplantation. 1988; 45: 640-646
        • Gerlach J.A.
        Human lymphocyte antigen molecular typing how to identify the 1250 alleles out there.
        Arch Pathol Lab Med. 2002; 126: 281-284
      1. Hui KM, Bidwell JL. Handbook of HLA Typing Techniques. Boca Raton, FL: Google Books, CRC Press; 1993. (n.d.).

        • Wordsworth P.
        Techniques used to define human MHC antigens: polymerase chain reaction and oligonucleotide probes.
        Immunolog Letters. 1991; 29: 37-39
        • Suberbielle-Boissel C.
        • Chapuis E.
        • D.C.-T
        Comparative study of two methods of HLA-DR typing: serology and PCR/dot blot reverse.
        Transplant Proceedings. 1997; 29: 2335-2336
        • Metcalfe P.
        • Waters A.H.
        HPA-1 typing by PCR amplification with sequence-specific primers (PCR-SSP): a rapid and simple technique.
        Br J Haematol. 1993; 85: 227-229
        • Bunce M.
        • Taylor C.J.
        • Welsh K.I.
        Rapid HLA-DQB typing by eight polymerase chain reaction amplifications with sequence-specific primers (PCR-SSP).
        Hum Immunol. 1993; 37: 201-206
        • Bunce M.
        • O’Neill C.M.
        • Barnardo M.C.N.M.
        • et al.
        Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP).
        Tissue Antigens. 1995; 46: 355-367
        • Olerup O.
        • Zetterquist H.
        HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation.
        Tissue Antigens. 1992; 39https://doi.org/10.1111/j.1399-0039.1992.tb01940.x
      2. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463-7.

        • Dunn P.P.J.
        Human leucocyte antigen typing: techniques and technology, a critical appraisal.
        Int J Immunogenet. 2011; 38: 463-473
        • Bentley G.
        • Higuchi R.
        • Hoglund B.
        • et al.
        High-resolution, high-throughput HLA genotyping by next-generation sequencing.
        Tissue Antigens. 2009; 74: 393-403
        • Montgomery M.C.
        • Petraroia R.
        • Weimer E.T.
        Buccal swab genomic DNA fragmentation predicts likelihood of successful HLA genotyping by next-generation sequencing.
        Hum Immunol. 2017; 78: 634-641
        • Ingram K.J.
        • O’Shields E.F.
        • Kiger D.F.
        • et al.
        NGS and HLA: The long road ahead.
        Hum Immunol. 2020; https://doi.org/10.1016/j.humimm.2020.03.001
      3. Shieh M, Chitnis N, Monos D. Human Leukocyte Antigen and Disease Associations: A Broader Perspective. Clin Lab Med 2018;38(4):679-93.

      4. Profaizer T, Kumánovics A. Human Leukocyte Antigen Typing by Next-Generation Sequencing. Clin Lab Med 2018;38(4):565-78.

        • Klasberg S.
        • Surendranath V.
        • Lange V.
        • et al.
        Bioinformatics strategies, challenges, and opportunities for next generation sequencing-based HLA genotyping.
        Transfus Med Hemother. 2019; 46: 312-325
        • Nelson W.C.
        • Pyo C.W.
        • Vogan D.
        • et al.
        An integrated genotyping approach for HLA and other complex genetic systems.
        Hum Immunol. 2015; 76: 928-938
        • Smith A.G.
        • Pyo C.W.
        • Nelson W.
        • et al.
        Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors.
        Hum Immunol. 2014; 75: 1040-1046
        • Holcomb C.L.
        • Hoglund B.
        • Anderson M.W.
        • et al.
        A multi-site study using high-resolution HLA genotyping by next generation sequencing.
        Tissue Antigens. 2011; 77: 206-217
        • Ehrenberg P.K.
        • Geretz A.
        • Sindhu R.K.
        • et al.
        High-throughput next-generation sequencing to genotype six classical HLA loci from 96 donors in a single MiSeq run.
        HLA. 2017; 90: 284-291
        • Weimer E.T.
        • Montgomery M.
        • Petraroia R.
        • et al.
        Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing.
        J Mol Diagn. 2016; 18: 668-675
        • Wittig M.
        • Anmarkrud J.A.
        • Kassens J.C.
        • et al.
        Development of a high-resolution NGS-based HLA-typing and analysis pipeline.
        Nucleic Acids Res. 2015; 43: e70
        • Lank S.M.
        • Golbach B.A.
        • Creager H.M.
        • et al.
        Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing.
        BMC Genomics. 2012; 13: 378
        • Liu C.
        • Duffy B.F.
        • Weimer E.T.
        • et al.
        Performance of a multiplexed amplicon-based next-generation sequencing assay for HLA typing.
        PLoS One. 2020; 15: e0232050
        • De Santis D.
        • Truong L.
        • Martinez P.
        • et al.
        Rapid high-resolution HLA genotyping by MinION Oxford nanopore sequencing for deceased donor organ allocation.
        HLA. 2020; https://doi.org/10.1111/tan.13901
        • Montgomery M.
        • Berka J.
        • immunology E.W.-H.
        • et al.
        Suitability of dried DNA for long-range PCR amplification and HLA typing by next-generation sequencing.
        Hum Immunol. 2019; 80: 135-139
        • Ehrenberg P.K.
        • Geretz A.
        • Baldwin K.M.
        • et al.
        High-throughput multiplex HLA genotyping by next-generation sequencing using multi-locus individual tagging.
        BMC Genomics. 2014; 15: 864
      5. Walsh PS, Erlich HA, Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl 1992;1(4):241-50.

        • Osoegawa K.
        • Vayntrub T.A.
        • Wenda S.
        • et al.
        Quality Control Project of NGS HLA Genotyping for the 17th International HLA and Immunogenetics Workshop.
        Hum Immunol. 2019; https://doi.org/10.1016/j.humimm.2019.01.009
        • Montgomery M.C.
        • Weimer E.T.
        Clinical validation of next generation sequencing for HLA typing using trusight HLA.
        Hum Immunol. 2015; 76: 139
        • Gandhi M.J.
        • Ferriola D.
        • Huang Y.
        • et al.
        Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory: metrics of relevance and considerations for its successful implementation.
        Arch Pathol Lab Med. 2017; 141: 806-812
        • Wittig M.
        • Juzenas S.
        • Vollstedt M.
        • et al.
        High-resolution HLA-typing by next-generation sequencing of randomly fragmented target DNA.
        Methods Mol Biol. 2018; : 63-88
        • Senev A.
        • Emonds M.
        • Van Sandt V.
        • et al.
        The clinical importance of extended 2nd field high-resolution HLA genotyping for kidney transplantation.
        Am J Transplant. 2020; https://doi.org/10.1111/ajt.15938
        • Badders J.L.
        • Jones J.A.
        • Jeresano M.E.
        • et al.
        Variable HLA expression on deceased donor lymphocytes: Not all crossmatches are created equal.
        Hum Immunol. 2015; 76: 795-800
        • Soe N.N.
        • Yin Y.
        • Valenzuela N.M.
        • et al.
        OR3 HLA-DPB1 single nucleotide polymorphism determines DP molecule expression and B lymphocyte crossmatch results.
        Hum Immunol. 2017; 78: 3
        • Kular L.
        • Liu Y.
        • Ruhrmann S.
        • et al.
        DNA methylation as a mediator of HLA-DRB1 15:01 and a protective variant in multiple sclerosis.
        Nat Commun. 2018; 9: 1-15
        • Hurley C.K.
        • Ng J.
        Continue to focus clinical decision-making on the antigen recognition domain for the present.
        Hum Immunol. 2019; 80: 79-84
        • Mayor N.P.
        • Hayhurst J.D.
        • Turner T.R.
        • et al.
        Recipients receiving better hla-matched hematopoietic cell transplantation grafts, uncovered by a novel hla typing method, have superior survival: a retrospective study.
        Biol Blood Marrow Transplant. 2019; 25: 443-450
        • Shieh M.
        • Chitnis N.
        • Clark P.
        • et al.
        Computational assessment of miRNA binding to low and high expression HLA-DPB1 allelic sequences.
        Hum Immunol. 2019; 80: 53-61
        • Thibodeau J.
        • Moulefera M.A.
        • Balthazard R.
        On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking.
        Hum Immunol. 2019; 80: 15-31
        • Petersdorf E.W.
        • Carrington M.
        • O’hUigin C.
        • et al.
        Role of HLA-B exon 1 in graft-versus-host disease after unrelated haemopoietic cell transplantation: a retrospective cohort study.
        Lancet Haematol. 2020; 7: e50-e60
        • Petersdorf E.W.
        • Stevenson P.
        • Malkki M.
        • et al.
        Patient HLA germline variation and transplant survivorship.
        J Clin Oncol. 2018; 36: 2524-2531
        • Hassall K.B.
        • Latham K.
        • Robinson J.
        • et al.
        Extending the sequences of HLA class I alleles without full-length genomic coverage using single molecule real-time DNA sequencing.
        HLA. 2020; 95: 196-199
        • Robinson J.
        • Barker D.J.
        • Georgiou X.
        • et al.
        IPD-IMGT/HLA Database.
        Nucleic Acids Res. 2019; 48: D948-D955
        • Mayor N.P.
        • Robinson J.
        • McWhinnie A.J.
        • et al.
        HLA Typing for the Next Generation.
        PLoS One. 2015; 10: e0127153
        • Dilthey A.T.
        • Gourraud P.A.
        • Mentzer A.J.
        • et al.
        High-accuracy hla type inference from whole-genome sequencing data using population reference graphs.
        PLoS Comput Biol. 2016; 12: e1005151
        • Xie C.
        • Yeo Z.X.
        • Wong M.
        • et al.
        Fast and accurate HLA typing from short-read next-generation sequence data with xHLA.
        Proc Natl Acad Sci U S A. 2017; 114: 8059-8064
        • Xie M.
        • Li J.
        • Jiang T.
        Accurate HLA type inference using a weighted similarity graph.
        BMC Bioinformatics. 2010; 11: S10
        • Huang Y.
        • Dinh A.
        • Heron S.
        • et al.
        Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation.
        Am J Transplant. 2019; 19: 1955-1963