Advertisement

Precision Medicine Using Pharmacogenomic Panel-Testing

Current Status and Future Perspectives
      Logistics and cost-effectiveness of pharmacogenomics (PGx)-guided prescribing may be optimized when delivered in a preemptive panel approach.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pirmohamed M.
        • James S.
        • Meakin S.
        • et al.
        Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients.
        BMJ. 2004; 329: 15-19
        • Johnson J.A.
        • Bootman J.L.
        Drug-related morbidity and mortality. A cost-of-illness model.
        Arch Intern Med. 1995; 155: 1949-1956
      1. Therapy (NNT) Reviews.
        (Available at:) (Accessed November 11, 2019)
        • Harper A.R.
        • Topol E.J.
        Pharmacogenomics in clinical practice and drug development.
        Nat Biotechnol. 2012; 30: 1117-1124
        • Jameson J.L.
        • Longo D.L.
        Precision medicine--personalized, problematic, and promising.
        N Engl J Med. 2015; 372: 2229-2234
        • Peck R.W.
        Precision medicine is not just genomics: the right dose for every patient.
        Annu Rev Pharmacol Toxicol. 2018; 58: 105-122
        • Matthaei J.
        • Brockmoller J.
        • Tzvetkov M.V.
        • et al.
        Heritability of metoprolol and torsemide pharmacokinetics.
        Clin Pharmacol Ther. 2015; 98: 611-621
        • Alexanderson B.
        • Evans D.A.
        • Sjoqvist F.
        Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy.
        Br Med J. 1969; 4: 764-768
        • Vesell E.S.
        • Page J.G.
        Genetic control of drug levels in man: phenylbutazone.
        Science. 1968; 159: 1479-1480
        • Stage T.B.
        • Damkier P.
        • Pedersen R.S.
        • et al.
        A twin study of the trough plasma steady-state concentration of metformin.
        Pharmacogenet Genomics. 2015; 25: 259-262
        • Relling M.V.
        • Evans W.E.
        Pharmacogenomics in the clinic.
        Nature. 2015; 526: 343-350
        • Weinshilboum R.
        • Wang L.
        Pharmacogenomics: bench to bedside.
        Nat Rev Drug Discov. 2004; 3: 739-748
        • Roden D.M.
        • McLeod H.L.
        • Relling M.V.
        • et al.
        Pharmacogenomics.
        Lancet. 2019; 394: 521-532
        • Pirmohamed M.
        Personalized pharmacogenomics: predicting efficacy and adverse drug reactions.
        Annu Rev Genomics Hum Genet. 2014; 15: 349-370
        • Pirmohamed M.
        • Burnside G.
        • Eriksson N.
        • et al.
        A randomized trial of genotype-guided dosing of warfarin.
        N Engl J Med. 2013; 369: 2294-2303
        • Wu A.H.
        Pharmacogenomic testing and response to warfarin.
        Lancet. 2015; 385: 2231-2232
        • Verhoef T.I.
        • Ragia G.
        • de Boer A.
        • et al.
        A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon.
        New Engl J Med. 2013; 369: 2304-2312
        • Coenen M.J.
        • de Jong D.J.
        • van Marrewijk C.J.
        • et al.
        Identification of patients with variants in TPMT and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease.
        Gastroenterology. 2015; 149: 907-917.e7
        • Mallal S.
        • Phillips E.
        • Carosi G.
        • et al.
        HLA-B∗5701 screening for hypersensitivity to abacavir.
        N Engl J Med. 2008; 358: 568-579
        • Claassens D.M.F.
        • Vos G.J.A.
        • Bergmeijer T.O.
        • et al.
        A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI.
        N Engl J Med. 2019; 381: 1621-1631
        • Swen J.J.
        • Nijenhuis M.
        • de Boer A.
        • et al.
        Pharmacogenetics: from bench to byte--an update of guidelines.
        Clin Pharmacol Ther. 2011; 89: 662-673
        • Swen J.J.
        • Wilting I.
        • de Goede A.L.
        • et al.
        Pharmacogenetics: from bench to byte.
        Clin Pharmacol Ther. 2008; 83: 781-787
        • Relling M.V.
        • Klein T.E.
        CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network.
        Clin Pharmacol Ther. 2011; 89: 464-467
        • Dunnenberger H.M.
        • Crews K.R.
        • Hoffman J.M.
        • et al.
        Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers.
        Annu Rev Pharmacol Toxicol. 2015; 55: 89-106
        • Weitzel K.W.
        • Cavallari L.H.
        • Lesko L.J.
        Preemptive panel-based pharmacogenetic testing: the time is now.
        Pharm Res. 2017; 34: 1551-1555
        • Driest V.S.L.
        • Shi Y.
        • Bowton E.A.
        • et al.
        Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing.
        Clin Pharmacol Ther. 2014; 95: 423-431
        • Samwald M.
        • Xu H.
        • Blagec K.
        • et al.
        Incidence of exposure of patients in the United States to multiple drugs for which pharmacogenomic guidelines are available.
        PLoS One. 2016; 11: e0164972
        • Roden D.M.
        • Van Driest S.L.
        • Mosley J.D.
        • et al.
        Benefit of preemptive pharmacogenetic information on clinical outcome.
        Clin Pharmacol Ther. 2018; 103: 787-794
        • Bank P.C.D.
        • Swen J.J.
        • Guchelaar H.J.
        Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands.
        BMC Med. 2019; 17: 110
        • Lunenburg C.A.
        • van Staveren M.C.
        • Gelderblom H.
        • et al.
        Evaluation of clinical implementation of prospective DPYD genotyping in 5-fluorouracil- or capecitabine-treated patients.
        Pharmacogenomics. 2016; 17: 721-729
        • Abbasi J.
        Getting pharmacogenomics into the clinic.
        JAMA. 2016; 316: 1533-1535
        • Haga S.B.
        • Burke W.
        Pharmacogenetic testing: not as simple as it seems.
        Genet Med. 2008; 10: 391-395
        • Swen J.J.
        • Huizinga T.W.
        • Gelderblom H.
        • et al.
        Translating pharmacogenomics: challenges on the road to the clinic.
        PLoS Med. 2007; 4: e209
        • van der Wouden C.H.
        • Cambon-Thomsen A.
        • Cecchin E.
        • et al.
        Implementing pharmacogenomics in Europe: design and implementation strategy of the Ubiquitous Pharmacogenomics consortium.
        Clin Pharmacol Ther. 2017; 101: 341-358
        • Janssens A.C.
        • Deverka P.A.
        Useless until proven effective: the clinical utility of preemptive pharmacogenetic testing.
        Clin Pharmacol Ther. 2014; 96: 652-654
        • Altman R.B.
        Pharmacogenomics: "noninferiority" is sufficient for initial implementation.
        Clin Pharmacol Ther. 2011; 89: 348-350
        • van der Wouden C.H.
        • Swen J.J.
        • Schwab M.
        • et al.
        A brighter future for the implementation of pharmacogenomic testing.
        Eur J Hum Genet. 2016; 24: 1658-1660
        • Pirmohamed M.
        • Hughes D.A.
        Pharmacogenetic tests: the need for a level playing field.
        Nat Rev Drug Discov. 2013; 12: 3-4
        • Khoury M.J.
        Dealing with the evidence dilemma in genomics and personalized medicine.
        Clin Pharmacol Ther. 2010; 87: 635-638
        • Manson L.E.
        • van der Wouden C.H.
        • Swen J.J.
        • et al.
        The Ubiquitous Pharmacogenomics Consortium: making effective treatment optimization accessible to every European citizen.
        Pharmacogenomics. 2017; 18: 1041-1045
        • Elliott L.S.
        • Henderson J.C.
        • Neradilek M.B.
        • et al.
        Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: a prospective pilot randomized controlled trial.
        PLoS One. 2017; 12: e0170905
        • Brixner D.
        • Biltaji E.
        • Bress A.
        • et al.
        The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy.
        J Med Econ. 2016; 19: 213-228
        • Pérez V.
        • Salavert A.
        • Espadaler J.
        • et al.
        Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial.
        BMC Psychiatry. 2017; 17: 250
        • Espadaler J.
        • Tuson M.
        • Lopez-Ibor J.M.
        • et al.
        Pharmacogenetic testing for the guidance of psychiatric treatment: a multicenter retrospective analysis.
        CNS Spectr. 2017; 22: 315-324
        • Winner J.G.
        • Carhart J.M.
        • Altar C.A.
        • et al.
        Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall pharmacy costs in a 1 year prospective evaluation.
        Curr Med Res Opin. 2015; 31: 1633-1643
        • Alagoz O.
        • Durham D.
        • Kasirajan K.
        Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions.
        Pharmacogenomics J. 2015; 16: 129-136
        • van der Wouden C.H.
        • Bank P.C.D.
        • Ozokcu K.
        • et al.
        Pharmacist-initiated pre-emptive pharmacogenetic panel testing with clinical decision support in primary care: record of PGx results and real-world impact.
        Genes (Basel). 2019; 10: 416
        • Pulley J.M.
        • Denny J.C.
        • Peterson J.F.
        • et al.
        Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project.
        Clin Pharmacol Ther. 2012; 92: 87-95
        • Grice G.R.
        • Seaton T.L.
        • Woodland A.M.
        • et al.
        Defining the opportunity for pharmacogenetic intervention in primary care.
        Pharmacogenomics. 2006; 7: 61-65
        • Bradley P.
        • Shiekh M.
        • Mehra V.
        • et al.
        Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility.
        J Psychiatr Res. 2018; 96: 100-107
        • Walden L.M.
        • Brandl E.J.
        • Tiwari A.K.
        • et al.
        Genetic testing for CYP2D6 and CYP2C19 suggests improved outcome for antidepressant and antipsychotic medication.
        Psychiatry Res. 2018; 279: 111-115
        • Haga S.B.
        Managing increased accessibility to pharmacogenomic data.
        Clin Pharmacol Ther. 2019; 106: 922-924
        • Carere D.A.
        • VanderWeele T.J.
        • Vassy J.L.
        • et al.
        Prescription medication changes following direct-to-consumer personal genomic testing: findings from the Impact of Personal Genomics (PGen) Study.
        Genet Med. 2017; 19: 537-545
        • Caudle K.E.
        • Keeling N.J.
        • Klein T.E.
        • et al.
        Standardization can accelerate the adoption of pharmacogenomics: current status and the path forward.
        Pharmacogenomics. 2018; 19: 847-860
        • Pratt V.M.
        • Everts R.E.
        • Aggarwal P.
        • et al.
        Characterization of 137 genomic DNA reference materials for 28 pharmacogenetic genes: a GeT-RM collaborative project.
        J Mol Diagn. 2016; 18: 109-123
        • Pratt V.M.
        • Zehnbauer B.
        • Wilson J.
        • et al.
        Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1: a GeT-RM and Association for Molecular Pathology collaborative project.
        J Mol Diagn. 2010; 12: 835-846
        • Pratt V.M.
        • Del Tredici A.L.
        • Hachad H.
        • et al.
        Recommendations for clinical CYP2C19 genotyping allele selection: a report of the association for molecular pathology.
        J Mol Diagn. 2018; 20: 269-276
        • Bush W.S.
        • Crosslin D.R.
        • Owusu-Obeng A.
        • et al.
        Genetic variation among 82 pharmacogenes: the PGRNseq data from the eMERGE network.
        Clin Pharmacol Ther. 2016; 100: 160-169
        • Van der Wouden C.H.
        • Van Rhenen M.H.
        • Jama W.
        • et al.
        Development of the PGx-passport: a panel of actionable germline genetic variants for pre-emptive pharmacogenetic testing.
        Clin Pharmacol Ther. 2019; 106: 866-873
        • Drogemoller B.I.
        • Wright G.E.
        • Warnich L.
        Considerations for rare variants in drug metabolism genes and the clinical implications.
        Expert Opin Drug Metab Toxicol. 2014; 10: 873-884
        • Li B.
        • Seligman C.
        • Thusberg J.
        • et al.
        In silico comparative characterization of pharmacogenomic missense variants.
        BMC Genomics. 2014; 15: S4
        • Zhou Y.
        • Mkrtchian S.
        • Kumondai M.
        • et al.
        An optimized prediction framework to assess the functional impact of pharmacogenetic variants.
        Pharmacogenomics J. 2019; 19: 115-126
        • Kozyra M.
        • Ingelman-Sundberg M.
        • Lauschke V.M.
        Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response.
        Genet Med. 2016; 19: 20-29
        • Weinshilboum R.M.
        • Sladek S.L.
        Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity.
        Am J Hum Genet. 1980; 32: 651-662
      2. van der Lee M, Allard WG, Vossen RHAM, et al. A unifying model to predict variable drug response for personalised medicine. Biorxiv. 2020:2020.2003.2002.967554.

        • Hertz D.L.
        • Rae J.
        Pharmacogenetics of cancer drugs.
        Annu Rev Med. 2015; 66: 65-81
        • Hicks J.K.
        • Swen J.J.
        • Gaedigk A.
        Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization.
        Curr Drug Metab. 2014; 15: 218-232
        • Simoons M.
        • Mulder H.
        • Schoevers R.A.
        • et al.
        Availability of CYP2D6 genotyping results in general practitioner and community pharmacy medical records.
        Pharmacogenomics. 2017; 18: 843-851
        • Chambers D.A.
        • Feero W.G.
        • Khoury M.J.
        Convergence of implementation science, precision medicine, and the learning health care system: a new model for biomedical research.
        JAMA. 2016; 315: 1941-1942
        • Lu C.Y.
        • Williams M.S.
        • Ginsburg G.S.
        • et al.
        A proposed approach to accelerate evidence generation for genomic-based technologies in the context of a learning health system.
        Genet Med. 2018; 20: 390-396
        • Peterson J.F.
        • Roden D.M.
        • Orlando L.A.
        • et al.
        Building evidence and measuring clinical outcomes for genomic medicine.
        Lancet. 2019; 394: 604-610
        • Turnbull C.
        • Scott R.H.
        • Thomas E.
        • et al.
        The 100 000 Genomes Project: bringing whole genome sequencing to the NHS.
        BMJ. 2018; 361: k1687
        • Gottesman O.
        • Scott S.A.
        • Ellis S.B.
        • et al.
        The CLIPMERGE PGx Program: clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics.
        Clin Pharmacol Ther. 2013; 94: 214-217
        • Leitsalu L.
        • Haller T.
        • Esko T.
        • et al.
        Cohort profile: estonian biobank of the Estonian Genome Center, University of Tartu.
        Int J Epidemiol. 2015; 44: 1137-1147
        • Collins F.S.
        • Varmus H.
        A new initiative on precision medicine.
        N Engl J Med. 2015; 372: 793-795
        • Khoury M.J.
        • Rich E.C.
        • Randhawa G.
        • et al.
        Comparative effectiveness research and genomic medicine: an evolving partnership for 21st century medicine.
        Genet Med. 2009; 11: 707-711
        • Ford I.
        • Norrie J.
        Pragmatic trials.
        N Engl J Med. 2016; 375: 454-463
        • Fiore L.D.
        • Lavori P.W.
        Integrating randomized comparative effectiveness research with patient care.
        N Engl J Med. 2016; 374: 2152-2158
        • Weinfurt K.P.
        • Hernandez A.F.
        • Coronado G.D.
        • et al.
        Pragmatic clinical trials embedded in healthcare systems: generalizable lessons from the NIH Collaboratory.
        BMC Med Res Methodol. 2017; 17: 144
        • Brunette C.A.
        • Miller S.J.
        • Majahalme N.
        • et al.
        Pragmatic trials in genomic medicine: the Integrating Pharmacogenetics in Clinical Care (I-PICC) study.
        Clin Transl Sci. 2019; https://doi.org/10.1111/cts.12723
        • Sim I.
        Mobile devices and health.
        N Engl J Med. 2019; 381: 956-968
        • Coravos A.
        • Khozin S.
        • Mandl K.D.
        Developing and adopting safe and effective digital biomarkers to improve patient outcomes.
        NPJ Digit Med. 2019; 2: 14
      3. Mindstrong health and Takeda partner to explore development of digital biomarkers for mental health conditions. 2018 (Available at:) (Accessed December 10, 2020)
        • Lipsmeier F.
        • Taylor K.I.
        • Kilchenmann T.
        • et al.
        Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial.
        Mov Disord. 2018; 33: 1287-1297
        • Clay I.
        Impact of digital technologies on novel endpoint capture in clinical trials.
        Clin Pharmacol Ther. 2017; 102: 912-913
        • Haendel M.A.
        • Chute C.G.
        • Robinson P.N.
        Classification, ontology, and precision medicine.
        N Engl J Med. 2018; 379: 1452-1462
        • Miksad R.A.
        • Samant M.K.
        • Sarkar S.
        • et al.
        Small but mighty: the use of real-world evidence to inform precision medicine.
        Clin Pharmacol Ther. 2019; 106: 87-90
        • Yang W.
        • Wu G.
        • Broeckel U.
        • et al.
        Comparison of genome sequencing and clinical genotyping for pharmacogenes.
        Clin Pharmacol Ther. 2016; 100: 380-388
        • van der Lee M.
        • Allard W.G.
        • Bollen S.
        • et al.
        Repurposing of diagnostic whole exome sequencing data of 1,583 individuals for clinical pharmacogenetics.
        Clin Pharmacol Ther. 2019; https://doi.org/10.1002/cpt.1665
        • Holm I.A.
        • Agrawal P.B.
        • Ceyhan-Birsoy O.
        • et al.
        The BabySeq project: implementing genomic sequencing in newborns.
        BMC Pediatr. 2018; 18: 225
        • Kalia S.S.
        • Adelman K.
        • Bale S.J.
        • et al.
        Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics.
        Genet Med. 2017; 19: 249-255
        • Lauschke V.M.
        • Ingelman-Sundberg M.
        How to consider rare genetic variants in personalized drug therapy.
        Clin Pharmacol Ther. 2018; 103: 745-748
      4. McInnes G, Dalton R, Sangkuhl K, et al. Transfer learning enables prediction of CYP2D6 haplotype function. Biorxiv 2020:684357.

        • Gibson G.
        On the utilization of polygenic risk scores for therapeutic targeting.
        PLoS Genet. 2019; 15: e1008060
        • Watson J.D.
        • Crick F.H.
        Genetical implications of the structure of deoxyribonucleic acid.
        Nature. 1953; 171: 964-967
        • Lauschke V.M.
        • Zhou Y.
        • Ingelman-Sundberg M.
        Novel genetic an epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity.
        Pharmacol Ther. 2019; 197: 122-152
        • Sun L.
        • Xie C.
        • Wang G.
        • et al.
        Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.
        Nat Med. 2018; 24: 1919-1929
        • Kaddurah-Daouk R.
        • Weinshilboum R.
        Metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine.
        Clin Pharmacol Ther. 2015; 98: 71-75
        • Afsana
        • Jain V.
        • Haider N.
        • et al.
        3D printing in personalized drug delivery.
        Curr Pharm Des. 2018; 24: 5062-5071
        • Hansel T.T.
        • Kropshofer H.
        • Singer T.
        • et al.
        The safety and side effects of monoclonal antibodies.
        Nat Rev Drug Discov. 2010; 9: 325-338
        • Jackson H.J.
        • Rafiq S.
        • Brentjens R.J.
        Driving CAR T-cells forward.
        Nat Rev Clin Oncol. 2016; 13: 370-383
        • Naldini L.
        Gene therapy returns to centre stage.
        Nature. 2015; 526: 351-360
      5. Track your own healthcare with ’Volgjezorg. 2019 (Available at:) (Accessed January 18, 2019)
        • Samwald M.
        • Minarro-Giménez J.A.A.
        • Blagec K.
        • et al.
        Towards a global IT system for personalized medicine: the Medicine Safety Code initiative.
        Stud Health Technol Inform. 2014; 205: 261-265
        • Blagec K.
        • Koopmann R.
        • Crommentuijn-van Rhenen M.
        • et al.
        Implementing pharmacogenomics decision support across seven European countries: the Ubiquitous Pharmacogenomics (U-PGx) project.
        J Am Med Inform Assoc. 2018; 25: 893-898