Advertisement

Next-Generation Sequencing Approaches to Predicting Antimicrobial Susceptibility Testing Results

      Next-generation sequencing (NGS) methods allow for a comprehensive detection of resistance genes within an organism or microbiome, known as the resistome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • O’Neil J.
        Tackling drug-resistant infections globally: final report and recommendations, the review on antimicrobial resistance.
        2016 (Available at:)
        • Ardal C.
        • Outterson K.
        • Hoffman S.J.
        • et al.
        International cooperation to improve access to and sustain effectiveness of antimicrobials.
        Lancet. 2016; 387: 296-307
        • Peacock S.J.
        • Parkhill J.
        • Brown N.M.
        Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens.
        Microbiology. 2018; 164: 1213-1219
        • Schurch A.C.
        • van Schaik W.
        Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance.
        Ann N Y Acad Sci. 2017; 1388: 108-120
        • Haidar G.
        • Philips N.J.
        • Shields R.K.
        • et al.
        Ceftolozane-tazobactam for the treatment of multidrug-resistant pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance.
        Clin Infect Dis. 2017; 65: 110-120
        • Shields R.K.
        • Chen L.
        • Cheng S.
        • et al.
        Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant klebsiella pneumoniae infections.
        Antimicrob Agents Chemother. 2017; 61 ([pii:e02097-16])
        • Simner P.J.
        • Antar A.A.R.
        • Hao S.
        • et al.
        Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae.
        J Antimicrob Chemother. 2018; 73: 1796-1803
        • Li J.
        • Rettedal E.A.
        • van der Helm E.
        • et al.
        Antibiotic treatment drives the diversification of the human gut resistome.
        Genomics Proteomics Bioinformatics. 2019; 17: 39-51
        • Lanza V.F.
        • Baquero F.
        • Martinez J.L.
        • et al.
        In-depth resistome analysis by targeted metagenomics.
        Microbiome. 2018; 6: 11
        • Su M.
        • Satola S.W.
        • Read T.D.
        Genome-based prediction of bacterial antibiotic resistance.
        J Clin Microbiol. 2019; 57 ([pii:e01405-18])
        • EUCAST
        Breakpoints tables for interpretation MICs and zone diameter, version 12.
        2022 (Available at:)
        • Clinical and Laboratory Standards Institute
        Methods for dilution antimicrobial susceptibility tests for bacteria that grow Aerobically, S29.
        Clinical and Laboratory Standards Institute, Wayne (PA)2019
        • Clinical and Laboratory Standards Institute
        Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.
        11th edition. Clinical and Laboratory Standards Institute, Wayne (PA)2018
        • Banerjee R.
        • Teng C.B.
        • Cunningham S.A.
        • et al.
        Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing.
        Clin Infect Dis. 2015; 61: 1071-1080
        • Ameur A.
        • Kloosterman W.P.
        • Hestand M.S.
        Single-molecule sequencing: towards clinical applications.
        Trends Biotechnol. 2019; 37: 72-85
        • Mitchell S.L.
        • Simner P.J.
        Next-Generation Sequencing in Clinical Microbiology: Are We There Yet?.
        Clin Lab Med. 2019; 39: 405-418
        • Tamma P.D.
        • Fan Y.
        • Bergman Y.
        • et al.
        Applying rapid whole-genome sequencing to predict phenotypic antimicrobial susceptibility testing results among carbapenem-resistant klebsiella pneumoniae clinical isolates.
        Antimicrob Agents Chemother. 2019; 63 ([pii:e01923-18])
        • Cao M.D.
        • Ganesamoorthy D.
        • Elliott A.G.
        • et al.
        Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION(TM) sequencing.
        Gigascience. 2016; 5: 32
        • Lemon J.K.
        • Khil P.P.
        • Frank K.M.
        • et al.
        Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates.
        J Clin Microbiol. 2017; 55: 3530-3543
        • Břinda K.
        • Callendrello A.
        • Cowley L.
        • et al.
        Lineage calling can identify antibiotic resistance clones within minutes.
        Pathog Dis. 2018; 76
        • Ellington M.J.
        • Ekelund O.
        • Aarestrup F.M.
        • et al.
        The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee.
        Clin Microbiol Infect. 2017; 23: 2-22
        • Jia B.
        • Raphenya A.R.
        • Alcock B.
        • et al.
        CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database.
        Nucleic Acids Res. 2017; 45: D566-D573
        • Zankari E.
        • Hasman H.
        • Cosentino S.
        • et al.
        Identification of acquired antimicrobial resistance genes.
        J Antimicrob Chemother. 2012; 67: 2640-2644
        • Mason A.
        • Foster D.
        • Bradley P.
        • et al.
        Accuracy of different bioinformatics methods in detecting antibiotic resistance and virulence factors from staphylococcus aureus whole-genome sequences.
        J Clin Microbiol. 2018; 56 ([pii:e01815-17])
        • Stoesser N.
        • Batty E.M.
        • Eyre D.W.
        • et al.
        Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data.
        J Antimicrob Chemother. 2013; 68: 2234-2244
        • Zhao S.
        • Tyson G.H.
        • Chen Y.
        • et al.
        Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in campylobacter spp.
        Appl Environ Microbiol. 2016; 82: 459-466
        • Sadouki Z.
        • Day M.R.
        • Doumith M.
        • et al.
        Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Shigella sonnei isolated from cases of diarrhoeal disease in England and Wales, 2015.
        J Antimicrob Chemother. 2017; 72: 2496-2502
        • McDermott P.F.
        • Tyson G.H.
        • Kabera C.
        • et al.
        Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal salmonella.
        Antimicrob Agents Chemother. 2016; 60: 5515-5520
        • Day M.R.
        • Doumith M.
        • Do Nascimento V.
        • et al.
        Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Salmonella enterica serovars Typhi and Paratyphi.
        J Antimicrob Chemother. 2018; 73: 365-372
        • Shelburne 3rd, S.A.
        • Lasky R.E.
        • Sahasrabhojane P.
        • et al.
        Development and validation of a clinical model to predict the presence of beta-lactam resistance in viridans group streptococci causing bacteremia in neutropenic cancer patients.
        Clin Infect Dis. 2014; 59: 223-230
        • Phaku P.
        • Lebughe M.
        • Strauss L.
        • et al.
        Unveiling the molecular basis of antimicrobial resistance in Staphylococcus aureus from the Democratic Republic of the Congo using whole genome sequencing.
        Clin Microbiol Infect. 2016; 22: 644.e1-5
        • Gordon N.C.
        • Price J.R.
        • Cole K.
        • et al.
        Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing.
        J Clin Microbiol. 2014; 52: 1182-1191
        • Tyson G.H.
        • Sabo J.L.
        • Rice-Trujillo C.
        • et al.
        Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus.
        Pathog Dis. 2018; 76
        • Kos V.N.
        • Deraspe M.
        • McLaughlin R.E.
        • et al.
        The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility.
        Antimicrob Agents Chemother. 2015; 59: 427-436
        • Mahe P.
        • Tournoud M.
        Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection.
        BMC Bioinformatics. 2018; 19: 383
        • Davis J.J.
        • Boisvert S.
        • Brettin T.
        • et al.
        Antimicrobial resistance prediction in PATRIC and RAST.
        Sci Rep. 2016; 6: 27930
        • Nguyen M.
        • Long S.W.
        • McDermott P.F.
        • et al.
        Using machine learning to predict antimicrobial mics and associated genomic features for nontyphoidal salmonella.
        J Clin Microbiol. 2019; 57 ([pii:e01260-18])
        • Nguyen M.
        • Brettin T.
        • Long S.W.
        • et al.
        Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae.
        Sci Rep. 2018; 8: 421
        • Moradigaravand D.
        • Palm M.
        • Farewell A.
        • et al.
        Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data.
        PLoS Comput Biol. 2018; 14: e1006258
        • Li Y.
        • Metcalf B.J.
        • Chochua S.
        • et al.
        Validation of beta-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences.
        BMC Genomics. 2017; 18: 621
        • Eyre D.W.
        • De Silva D.
        • Cole K.
        • et al.
        WGS to predict antibiotic MICs for Neisseria gonorrhoeae.
        J Antimicrob Chemother. 2017; 72: 1937-1947
        • Feliciano C.S.
        • Namburete E.I.
        • Rodrigues Placa J.
        • et al.
        Accuracy of whole genome sequencing versus phenotypic (MGIT) and commercial molecular tests for detection of drug-resistant Mycobacterium tuberculosis isolated from patients in Brazil and Mozambique.
        Tuberculosis (Edinb). 2018; 110: 59-67
        • Coll F.
        • McNerney R.
        • Preston M.D.
        • et al.
        Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences.
        Genome Med. 2015; 7: 51
        • Walker T.M.
        • Kohl T.A.
        • Omar S.V.
        • et al.
        Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study.
        Lancet Infect Dis. 2015; 15: 1193-1202
        • Chatterjee A.
        • Nilgiriwala K.
        • Saranath D.
        • et al.
        Whole genome sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: a potential tool for determining drug-resistance and strain lineage.
        Tuberculosis (Edinb). 2017; 107: 63-72
        • Ezewudo M.
        • Borens A.
        • Chiner-Oms A.
        • et al.
        Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase.
        Sci Rep. 2018; 8: 15382
        • Quan T.P.
        • Bawa Z.
        • Foster D.
        • et al.
        Evaluation of whole-genome sequencing for mycobacterial species identification and drug susceptibility testing in a clinical setting: a large-scale prospective assessment of performance against line probe assays and phenotyping.
        J Clin Microbiol. 2018; 56 ([pii:e01480-17])
        • Ruppe E.
        • Lazarevic V.
        • Girard M.
        • et al.
        Clinical metagenomics of bone and joint infections: a proof of concept study.
        Sci Rep. 2017; 7: 7718
        • Yan Q.
        • Wi Y.M.
        • Thoendel M.J.
        • et al.
        Evaluation of the CosmosID bioinformatics platform for prosthetic joint-associated sonicate fluid shotgun metagenomic data analysis.
        J Clin Microbiol. 2019; 57 ([pii:e01182-18])
        • Simner P.J.
        • Miller S.
        • Carroll K.C.
        Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases.
        Clin Infect Dis. 2018; 66: 778-788
        • Carter G.P.
        • Schultz M.B.
        • Baines S.L.
        • et al.
        Topical antibiotic use coselects for the carriage of mobile genetic elements conferring resistance to unrelated antimicrobials in staphylococcus aureus.
        Antimicrob Agents Chemother. 2018; 62 ([pii:e02000-17])
        • Hoffmann M.
        • Pettengill J.B.
        • Gonzalez-Escalona N.
        • et al.
        Comparative sequence analysis of multidrug-resistant IncA/C plasmids from salmonella enterica.
        Front Microbiol. 2017; 8: 1459
        • Hujer A.M.
        • Higgins P.G.
        • Rudin S.D.
        • et al.
        Nosocomial outbreak of extensively drug-resistant acinetobacter baumannii isolates containing blaOXA-237 carried on a plasmid.
        Antimicrob Agents Chemother. 2017; 61 ([pii:e00797-17])
        • Judge K.
        • Hunt M.
        • Reuter S.
        • et al.
        Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology.
        Microb Genom. 2016; 2: e000085
        • Schmidt K.
        • Mwaigwisya S.
        • Crossman L.C.
        • et al.
        Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing.
        J Antimicrob Chemother. 2017; 72: 104-114
        • Golparian D.
        • Dona V.
        • Sanchez-Buso L.
        • et al.
        Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer.
        Sci Rep. 2018; 8: 17596
        • Gire S.K.
        • Goba A.
        • Andersen K.G.
        • et al.
        Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak.
        Science. 2014; 345: 1369-1372
        • de Oliveira W.K.
        • Carmo E.H.
        • Henriques C.M.
        • et al.
        Zika virus infection and associated neurologic disorders in Brazil.
        N Engl J Med. 2017; 376: 1591-1593
        • Kos V.N.
        • McLaughlin R.E.
        • Gardner H.A.
        Elucidation of mechanisms of ceftazidime resistance among clinical isolates of pseudomonas aeruginosa by using genomic data.
        Antimicrob Agents Chemother. 2016; 60: 3856-3861
        • Allix-Beguec C.
        • Arandjelovic I.
        • Bi L.
        • et al.
        Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing.
        N Engl J Med. 2018; 379: 1403-1415