Advertisement
Review Article| Volume 43, ISSUE 1, P17-28, March 2023

Download started.

Ok

Electronic Health Record Optimization for Artificial Intelligence

Published:December 13, 2022DOI:https://doi.org/10.1016/j.cll.2022.09.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Milinovich A.
        • Kattan M.W.
        Extracting and utilizing electronic health data from Epic for research.
        Ann Transl Med. 2018; 6: 42
        • Fort D.
        • Weng C.
        • Bakken S.
        • et al.
        Considerations for using research data to verify clinical data accuracy.
        AMIA Jt Summits Transl Sci Proc. 2014; 2014: 211-217
        • Rajkomar A.
        • Oren E.
        • Chen K.
        • et al.
        Scalable and accurate deep learning with electronic health records.
        NPJ Digit Med. 2018; 1: 18
        • Miotto R.
        • Li L.
        • Kidd B.A.
        • et al.
        Deep patient: an unsupervised representation to predict the future of patients from the electronic health records.
        Sci Rep. 2016; 6: 26094
        • Lippi G.
        Machine learning in laboratory diagnostics: valuable resources or a big hoax?.
        Diagnosis (Berl). 2019; 8: 133-135
        • Baron J.M.
        • Kurant D.E.
        • Dighe A.S.
        Machine learning and other emerging decision support tools.
        Clin Lab Med. 2019; 39: 319-331
        • Rudolf J.W.
        • Dighe A.S.
        Decision support tools within the electronic health record.
        Clin Lab Med. 2019; 39: 197-213
        • de Mello B.H.
        • Rigo S.J.
        • da Costa C.A.
        • et al.
        Semantic interoperability in health records standards: a systematic literature review.
        Health Technol (Berl). 2022; 12: 255-272
        • Moreno-Conde A.
        • Moner D.
        • Cruz W.D.
        • et al.
        Clinical information modeling processes for semantic interoperability of electronic health records: systematic review and inductive analysis.
        J Am Med Inform Assoc. 2015; 22: 925-934
        • Ferrão J.C.
        • Oliveira M.D.
        • Janela F.
        • et al.
        Preprocessing structured clinical data for predictive modeling and decision support. A roadmap to tackle the challenges.
        Appl Clin Inform. 2016; 7: 1135-1153
        • Uchegbu C.
        • Jing X.
        The potential adoption benefits and challenges of LOINC codes in a laboratory department: a case study.
        Health Inf Sci Syst. 2017; 5: 6
        • Stram M.
        • Gigliotti T.
        • Hartman D.
        • et al.
        Logical Observation Identifier Names and Codes for laboratorians.
        Arch Pathol Lab Med. 2020; 144: 229-239
        • Baorto D.M.
        • Cimino J.J.
        • Parvin C.A.
        • et al.
        Using Logical Observation Identifier Names and Codes (LOINC) to exchange laboratory data among three academic hospitals.
        Proc AMIA Annu Fall Symp. 1997; : 96-100
        • Lin M.C.
        • Vreeman D.J.
        • McDonald C.J.
        • et al.
        Correctness of voluntary LOINC mapping for laboratory tests in three large institutions.
        AMIA Annu Symp Proc. 2010; 2010: 447-451
        • Schadow G.
        • McDonald C.J.
        • Suico J.G.
        • et al.
        Units of measure in clinical information systems.
        J Am Med Inform Assoc. 1999; 6: 151-162
        • Flatman R.
        Terminology, units and reporting: how harmonized do we need to be?.
        Clin Chem Lab Med. 2018; 57: 1-11
        • Gansel X.
        • Mary M.
        • van Belkum A.
        Semantic data interoperability, digital medicine, and e-health in infectious disease management: a review.
        Eur J Clin Microbiol Infect Dis. 2019; 38: 1023-1034
        • Burger G.
        • Abu-Hanna A.
        • de Keizer N.
        • et al.
        Natural language processing in pathology: a scoping review.
        J Clin Pathol. 2016; https://doi.org/10.1136/jclinpath-2016-203872
        • Bietenbeck A.
        • Streichert T.
        Preparing laboratories for interconnected health care.
        Diagnostics (Basel). 2021; 11: 1487-1494
        • Van Cott E.M.
        Laboratory test interpretations and algorithms in utilization management.
        Clin Chim Acta. 2014; 427: 188-192
        • Laposata M.E.
        • Laposata M.
        • Van Cott E.M.
        • et al.
        Physician survey of a laboratory medicine interpretive service and evaluation of the influence of interpretations on laboratory test ordering.
        Arch Pathol Lab Med. 2004; 128: 1424-1427
        • Vasikaran S.
        • Sikaris K.
        • Kilpatrick E.
        • et al.
        Assuring the quality of interpretative comments in clinical chemistry.
        Clin Chem Lab Med. 2016; 54: 1901-1911
        • Bezzegh A.
        • Takács I.
        • Ajzner É.
        Toward harmonization of interpretive commenting of common laboratory tests.
        Clin Biochem. 2017; 50: 612-616
        • Krumm N.
        • Shirts B.H.
        Technical, biological, and systems barriers for molecular clinical decision support.
        Clin Lab Med. 2019; 39: 281-294
        • Conway J.R.
        • et al.
        Next-generation sequencing and the clinical oncology workflow: data challenges, proposed solutions, and a call to action.
        JCO Precis Oncol. 2019; 3
        • Nakhleh R.E.
        Quality in surgical pathology communication and reporting.
        Arch Pathol Lab Med. 2011; 135: 1394-1397
        • Srigley J.R.
        • McGowan T.
        • Maclean A.
        • et al.
        Standardized synoptic cancer pathology reporting: a population-based approach.
        J Surg Oncol. 2009; 99: 517-524
        • Campbell W.S.
        • Karlsson D.
        • Vreeman D.J.
        • et al.
        A computable pathology report for precision medicine: extending an observables ontology unifying SNOMED CT and LOINC.
        J Am Med Inform Assoc. 2018; 25: 259-266
        • Campbell W.S.
        • Campbell J.R.
        • West W.W.
        • et al.
        Semantic analysis of SNOMED CT for a post-coordinated database of histopathology findings.
        J Am Med Inform Assoc. 2014; 21: 885-892
        • Ayaz M.
        • Pasha M.F.
        • Alzahrani M.Y.
        • et al.
        The fast health interoperability resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities.
        JMIR Med Inform. 2021; 9: e21929
        • Strasberg H.R.
        • Rhodes B.
        • Del Fiol G.
        • et al.
        Contemporary clinical decision support standards using health level seven international fast healthcare interoperability resources.
        J Am Med Inform Assoc. 2021; 28: 1796-1806
        • Weber G.M.
        • Adams W.G.
        • Bernstam E.V.
        • et al.
        Biases introduced by filtering electronic health records for patients with “complete data”.
        J Am Med Inform Assoc. 2017; 24: 1134-1141
        • Luo Y.
        • Szolovits P.
        • Dighe A.S.
        • et al.
        3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data.
        J Am Med Inform Assoc. 2018; 25: 645-653
        • Luo Y.
        • Szolovits P.
        • Dighe A.S.
        • et al.
        Using machine learning to predict laboratory test results.
        Am J Clin Pathol. 2016; 145: 778-788
        • Martin S.
        • Wagner J.
        • Lupulescu-Mann N.
        • et al.
        Comparison of EHR-based diagnosis documentation locations to a gold standard for risk stratification in patients with multiple chronic conditions.
        Appl Clin Inform. 2017; 8: 794-809
        • Burrows E.K.
        • Razzaghi H.
        • Utidjian L.
        • et al.
        Standardizing clinical diagnoses: evaluating alternate terminology selection.
        AMIA Jt Summits Transl Sci Proc. 2020; 2020: 71-79
        • Amos L.
        • Anderson D.
        • Brody S.
        • et al.
        UMLS users and uses: a current overview.
        J Am Med Inform Assoc. 2020; 27: 1606-1611
        • Wright A.
        • McCoy A.B.
        • Hickman T.T.
        • et al.
        Problem list completeness in electronic health records: a multi-site study and assessment of success factors.
        Int J Med Inform. 2015; 84: 784-790
        • Reimer A.P.
        • Dai W.
        • Smith B.
        • et al.
        Subcategorizing EHR diagnosis codes to improve clinical application of machine learning models.
        Int J Med Inform. 2021; 156: 104588
        • Wright A.
        • McGlinchey E.A.
        • Poon E.G.
        • et al.
        Ability to generate patient registries among practices with and without electronic health records.
        J Med Internet Res. 2009; 11: e31
        • Schmittdiel J.
        • Bodenheimer T.
        • Solomon N.A.
        • et al.
        Brief report: the prevalence and use of chronic disease registries in physician organizations. A national survey.
        J Gen Intern Med. 2005; 20: 855-858
        • Johnson K.E.
        • Kamineni A.
        • Fuller S.
        • et al.
        How the provenance of electronic health record data matters for research: a case example using system mapping.
        EGEMS (Wash DC). 2014; 2: 1058
        • Kelly J.
        • Wang C.
        • Zhang J.
        • et al.
        Automated mapping of real-world oncology laboratory data to LOINC.
        AMIA Annu Symp Proc. 2021; 2021: 611-620