Advertisement

Special Considerations in the Molecular Diagnostics of Pediatric Neoplasms

Published:August 24, 2022DOI:https://doi.org/10.1016/j.cll.2022.05.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dixon S.B.
        • Chen Y.
        • Yasui Y.
        • et al.
        Reduced morbidity and mortality in survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study.
        J Clin Oncol. 2020; 38: 3418-3429
        • Armstrong G.T.
        • Liu Q.
        • Yasui Y.
        • et al.
        Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study.
        J Clin Oncol. 2009; 27: 2328-2338
        • Siegel D.A.
        • Richardson L.C.
        • Henley S.J.
        • et al.
        Pediatric cancer mortality and survival in the United States, 2001-2016.
        Cancer. 2020; 126: 4379-4389
        • Fuchs J.
        The role of minimally invasive surgery in pediatric solid tumors.
        Pediatr Surg Int. 2015; 31: 213-228
        • Ilivitzki A.
        • Abugazala M.
        • Arkovitz M.
        • et al.
        Ultrasound-guided core biopsy as the primary tool for tissue diagnosis in pediatric oncology.
        J Pediatr Hematol Oncol. 2014; 36: 333-336
        • Garrett K.M.
        • Fuller C.E.
        • Santana V.M.
        • et al.
        Percutaneous biopsy of pediatric solid tumors.
        Cancer. 2005; 104: 644-652
        • Cooley L.D.
        • Morton C.C.
        • Sanger W.G.
        • et al.
        Section E6.5-6.8 of the ACMG technical standards and guidelines: chromosome studies of lymph node and solid tumor-acquired chromosomal abnormalities.
        Genet Med. 2016; 18: 643-648
        • Pinches R.S.
        • Clinton C.M.
        • Ward A.
        • et al.
        Making the most of small samples: optimization of tissue allocation of pediatric solid tumors for clinical and research use.
        Pediatr Blood Cancer. 2020; 67https://doi.org/10.1002/pbc.28326
        • Kram D.E.
        • Henderson J.J.
        • Baig M.
        • et al.
        Embryonal tumors of the central nervous system in children: the era of targeted therapeutics.
        Bioeng Basel Switz. 2018; 5: E78
        • Gadd S.
        • Huff V.
        • Walz A.L.
        • et al.
        A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor.
        Nat Genet. 2017; 49: 1487-1494
        • PedBrain-Seq Project I.C.G.C.
        • MMML-Seq Project I.C.G.C.
        • Gröbner S.N.
        • et al.
        The landscape of genomic alterations across childhood cancers.
        Nature. 2018; 555: 321-327
        • Campbell B.B.
        • Light N.
        • Fabrizio D.
        • et al.
        Comprehensive analysis of hypermutation in human cancer.
        Cell. 2017; 171: 1042-1056.e10
        • Dupain C.
        • Harttrampf A.C.
        • Urbinati G.
        • et al.
        Relevance of fusion genes in pediatric cancers: toward precision medicine.
        Mol Ther Nucleic Acids. 2017; 6: 315-326
        • Sweet-Cordero E.A.
        • Biegel J.A.
        The genomic landscape of pediatric cancers: implications for diagnosis and treatment.
        Science. 2019; 363: 1170-1175
        • Slack J.C.
        • Church A.J.
        Molecular alterations in pediatric solid tumors.
        Surg Pathol Clin. 2021; 14: 473-492
        • Hingorani P.
        • Janeway K.
        • Crompton B.D.
        • et al.
        Current state of pediatric sarcoma biology and opportunities for future discovery: a report from the sarcoma translational research workshop.
        Cancer Genet. 2016; 209: 182-194
        • Lautz T.B.
        • Hayes-Jordan A.
        Recent progress in pediatric soft tissue sarcoma therapy.
        Semin Pediatr Surg. 2019; 28: 150862
        • Ingley K.M.
        • Cohen-Gogo S.
        • Gupta A.A.
        Systemic therapy in pediatric-type soft-tissue sarcoma.
        Curr Oncol. 2020; 27: 6-16
        • Agaram N.P.
        • LaQuaglia M.P.
        • Alaggio R.
        • et al.
        MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification.
        Mod Pathol. 2019; 32: 27-36
        • Nobre L.
        • Zapotocky M.
        • Ramaswamy V.
        • et al.
        Outcomes of BRAF V600E pediatric gliomas treated with targeted BRAF inhibition.
        JCO Precis Oncol. 2020; 4 (PO.19.00298)
        • Ryall S.
        • Zapotocky M.
        • Fukuoka K.
        • et al.
        Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas.
        Cancer Cell. 2020; 37: 569-583.e5
        • Johnson A.
        • Severson E.
        • Gay L.
        • et al.
        Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures.
        Oncologist. 2017; 22: 1478-1490
        • Fangusaro J.
        • Bandopadhayay P.
        Advances in the classification and treatment of pediatric brain tumors.
        Curr Opin Pediatr. 2021; 33: 26-32
        • Ward E.
        • DeSantis C.
        • Robbins A.
        • et al.
        Childhood and adolescent cancer statistics, 2014.
        CA Cancer J Clin. 2014; 64: 83-103
        • Harris M.H.
        • Czuchlewski D.R.
        • Arber D.A.
        • et al.
        Genetic testing in the diagnosis and biology of acute leukemia.
        Am J Clin Pathol. 2019; 152: 322-346
        • Swerdlow S.H.
        • Campo E.
        • Harris N.L.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues.
        . 2011; 117: 5019-5032
        • Harris M.H.
        Gene rearrangement detection in pediatric leukemia.
        Clin Lab Med. 2021; 41: 551-561
        • National Comprehensive Cancer Network
        Acute lymphoblastic leukemia (Version 2.2021).
        (Available at:) (Accessed October 1, 2021)
        • Roberts K.G.
        • Li Y.
        • Payne-Turner D.
        • et al.
        Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia.
        N Engl J Med. 2014; 371: 1005-1015
        • Surrey L.F.
        • MacFarland S.P.
        • Chang F.
        • et al.
        Clinical utility of custom-designed NGS panel testing in pediatric tumors.
        Genome Med. 2019; 11: 32
        • Cheng L.
        • Pandya P.H.
        • Liu E.
        • et al.
        Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma.
        BMC Med Genomics. 2019; 12: 23
        • Oberg J.A.
        • Glade Bender J.L.
        • Sulis M.L.
        • et al.
        Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations.
        Genome Med. 2016; 8: 133
        • Ritter D.I.
        • Rao S.
        • Kulkarni S.
        • et al.
        A case for expert curation: an overview of cancer curation in the Clinical Genome Resource (ClinGen).
        Cold Spring Harb Mol Case Stud. 2019; 5: a004739
        • Kallen M.E.
        • Hornick J.L.
        The 2020 WHO classification: what’s new in soft tissue tumor Pathology?.
        Am J Surg Pathol. 2021; 45: e1-e23
        • Louis D.N.
        • Perry A.
        • Wesseling P.
        • et al.
        The 2021 WHO classification of tumors of the central nervous system: a summary.
        Neuro-Oncol. 2021; 23 (Available at:): 1231-1251
        • Schwalbe E.C.
        • Lindsey J.C.
        • Nakjang S.
        • et al.
        Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study.
        Lancet Oncol. 2017; 18: 958-971
        • Ramaswamy V.
        • Remke M.
        • Bouffet E.
        • et al.
        Risk stratification of childhood medulloblastoma in the molecular era: the current consensus.
        Acta Neuropathol (Berl). 2016; 131: 821-831
        • Pinto N.R.
        • Applebaum M.A.
        • Volchenboum S.L.
        • et al.
        Advances in risk classification and treatment Strategies for Neuroblastoma.
        J Clin Oncol. 2015; 33: 3008-3017
        • Vrooman L.M.
        • Blonquist T.M.
        • Harris M.H.
        • et al.
        Refining risk classification in childhood B acute lymphoblastic leukemia: results of DFCI ALL Consortium Protocol 05-001.
        Blood Adv. 2018; 2: 1449-1458
        • Burns M.A.
        • Place A.E.
        • Stevenson K.E.
        • et al.
        Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: results from DFCI ALL Consortium Protocols 05-001 and 11-001.
        Pediatr Blood Cancer. 2021; 68: e28719
        • Messina M.
        • Chiaretti S.
        • Wang J.
        • et al.
        Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes.
        Oncotarget. 2016; 7: 13886-13901
        • Pui C.-H.
        • Yang J.J.
        • Hunger S.P.
        • et al.
        Childhood acute lymphoblastic leukemia: progress through collaboration.
        J Clin Oncol. 2015; 33: 2938-2948
        • Robinson J.O.
        • Wynn J.
        • Biesecker B.
        • et al.
        Psychological outcomes related to exome and genome sequencing result disclosure: a meta-analysis of seven Clinical Sequencing Exploratory Research (CSER) Consortium studies.
        Genet Med. 2019; 21: 2781-2790
        • Langenberg K.P.S.
        • Looze E.J.
        • Molenaar J.J.
        The landscape of pediatric precision oncology: program design, actionable alterations, and clinical trial development.
        Cancers. 2021; 13: 4324
        • Scott L.J.
        Larotrectinib: first global approval.
        Drugs. 2019; 79: 201-206
        • Wachter F.
        • Al-Ibraheemi A.
        • Trissal M.
        • et al.
        Molecular characterization of inflammatory tumors facilitates initiation of effective therapy.
        Pediatrics. 2021; 148 (e2021050990)
        • Fiala E.M.
        • Jayakumaran G.
        • Mauguen A.
        • et al.
        Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors.
        Nat Cancer. 2021; 2: 357-365
        • Inaba H.
        • Mullighan C.G.
        Pediatric acute lymphoblastic leukemia.
        Haematologica. 2020; 105: 2524-2539
        • Yuan H.
        • Ji J.
        • Shi M.
        • et al.
        Characteristics of pan-cancer patients with ultrahigh tumor mutation burden.
        Front Oncol. 2021; 11: 682017
        • Waterfall J.J.
        • Meltzer P.S.
        Avalanching mutations in biallelic mismatch repair deficiency syndrome.
        Nat Genet. 2015; 47: 194-196
        • Sinicrope F.A.
        Lynch syndrome-associated colorectal cancer.
        N Engl J Med. 2018; 379: 764-773
        • Durno C.
        • Ercan A.B.
        • Bianchi V.
        • et al.
        Survival benefit for individuals with constitutional mismatch repair deficiency undergoing Surveillance.
        J Clin Oncol. 2021; 39: 2779-2790
        • Noskova H.
        • Kyr M.
        • Pal K.
        • et al.
        Assessment of tumor mutational burden in pediatric tumors by real-life whole-exome sequencing and in Silico Simulation of targeted gene panels: how the choice of method could affect the clinical decision?.
        Cancers. 2020; 12: E230
        • Tran T.H.
        • Harris M.H.
        • Nguyen J.V.
        • et al.
        Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia.
        Blood Adv. 2018; 2: 529-533
        • Schultz K.A.P.
        • Stewart D.R.
        • Kamihara J.
        • et al.
        DICER1 tumor predisposition.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2020: 1993-2022 (Available at:)
        • Friedman J.M.
        Neurofibromatosis 1.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2022: 1993-2022 (Available at:)
        • Evans D.G.
        Neurofibromatosis 2.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2018: 1993-2022 (Available at:)
        • Schneider K.
        • Zelley K.
        • Nichols K.E.
        • et al.
        Li-fraumeni syndrome.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2019: 1993-2022 (Available at:)
        • Lohmann D.R.
        • Gallie B.L.
        Retinoblastoma.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2018: 1993-2022 (Available at:)
        • Evans D.G.
        • Farndon P.A.
        Nevoid Basal cell carcinoma syndrome.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2018: 1993-2022 (Available at:)
        • Idos G.
        • Valle L.
        Lynch syndrome.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2021: 1993-2022 (Available at:)
        • Else T.
        • Greenberg S.
        • Fishbein L.
        Hereditary Paraganglioma-Pheochromocytoma syndromes.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2018: 1993-2022 (Available at:)
        • Northrup H.
        • Koenig M.K.
        • Pearson D.A.
        • et al.
        Tuberous Sclerosis complex.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2021: 1993-2022 (Available at:)
        • Allanson J.E.
        • Roberts A.E.
        Noonan syndrome.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2022: 1993-2022 (Available at:)
        • Nelson A.
        • Myers K.
        Shwachman-diamond syndrome.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2018: 1993-2022 (Available at:)
        • Deuitch N.
        • Broadbridge E.
        • Cunningham L.
        • et al.
        RUNX1 familial Platelet disorder with associated myeloid malignancies.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2021: 1993-2021 (Available at:)
        • Porter C.C.
        • Di Paola J.
        • Pencheva B.
        ETV6 thrombocytopenia and predisposition to leukemia.
        in: Adam M.P. Ardinger H.H. Pagon R.A. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA)2020: 1993-2021 (Available at:)
        • Alix-Panabières C.
        • Pantel K.
        Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy.
        Cancer Discov. 2016; 6: 479-491
        • Diaz L.A.
        • Bardelli A.
        Liquid biopsies: genotyping circulating tumor DNA.
        J Clin Oncol. 2014; 32: 579-586
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra24
        • Escudero L.
        • Llort A.
        • Arias A.
        • et al.
        Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma.
        Nat Commun. 2020; 11: 5376
        • Mueller S.
        • Jain P.
        • Liang W.S.
        • et al.
        A pilot precision medicine trial for children with diffuse intrinsic pontine glioma-PNOC003: a report from the Pacific Pediatric Neuro-Oncology Consortium.
        Int J Cancer. 2019; 145: 1889-1901
        • Panditharatna E.
        • Kilburn L.B.
        • Aboian M.S.
        • et al.
        Clinically relevant and minimally invasive tumor Surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy.
        Clin Cancer Res. 2018; 24: 5850-5859
        • Shah A.T.
        • Azad T.D.
        • Breese M.R.
        • et al.
        A comprehensive circulating tumor DNA assay for detection of translocation and copy-number changes in pediatric sarcomas.
        Mol Cancer Ther. 2021; (MCT-20-0987): 1535-7163https://doi.org/10.1158/1535-7163.MCT-20-0987
        • Klega K.
        • Imamovic-Tuco A.
        • Ha G.
        • et al.
        Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors.
        JCO Precis Oncol. 2018; : 1-13

      Further reading

        • Church A.J.
        • Corson L.B.
        • Kao P.-C.
        • et al.
        Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer.
        Nature Medicine. 2022; (In press)https://doi.org/10.1038/s41591-022-01856-6