Advertisement

Principles and Validation of Bioinformatics Pipeline for Cancer Next-Generation Sequencing

Published:August 22, 2022DOI:https://doi.org/10.1016/j.cll.2022.05.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roy S.
        • Coldren C.
        • Karunamurthy A.
        • et al.
        Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists.
        J Mol Diagn. 2018; 20: 4-27
        • Wang X.
        • Liotta L.
        Clinical bioinformatics: a new emerging science.
        J Clin Bioinforma. 2011; 1: 1
        • Mantere T.
        • Kersten S.
        • Hoischen A.
        Long-read sequencing emerging in medical genetics.
        Front Genet. 2019; 10: 426
        • Roy S.
        • LaFramboise W.A.
        • Nikiforov Y.E.
        • et al.
        Next-generation sequencing informatics: challenges and strategies for implementation in a clinical environment.
        Arch Pathol Lab Med. 2016; 140: 958-975
        • Hsi-Yang Fritz M.
        • Leinonen R.
        • Cochrane G.
        • et al.
        Efficient storage of high throughput DNA sequencing data using reference-based compression.
        Genome Res. 2011; 21: 734-740
        • Kadri S.
        Advances in next-generation sequencing bioinformatics for clinical diagnostics: taking precision oncology to the next level.
        Adv Mol Pathol. 2018; 1: 149-166
        • Abel H.J.
        • Duncavage E.J.
        Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches.
        Cancer Genet. 2013; 206: 432-440
        • Kirchner M.
        • Neumann O.
        • Volckmar A.L.
        • et al.
        RNA-based detection of gene fusions in formalin-fixed and paraffin-embedded solid cancer samples.
        Cancers (Basel). 2019; : 11
        • Sun L.
        • McNulty S.N.
        • Evenson M.J.
        • et al.
        Clinical implications of a targeted RNA-sequencing panel in the detection of gene fusions in solid tumors.
        J Mol Diagn. 2021; 23: 1749-1760
        • Lubin I.M.
        • Aziz N.
        • Babb L.J.
        • et al.
        Principles and recommendations for standardizing the use of the next-generation sequencing variant file in clinical settings.
        J Mol Diagn. 2017; 19: 417-426
        • Jennings L.J.
        • Arcila M.E.
        • Corless C.
        • et al.
        Guidelines for validation of next-generation sequencing-based oncology panels: a joint Consensus recommendation of the Association for Molecular Pathology and College of American Pathologists.
        J Mol Diagn. 2017; 19: 341-365
        • Leipzig J.
        A review of bioinformatic pipeline frameworks.
        Brief Bioinform. 2017; 18: 530-536
        • Fjukstad B.
        • Bongo L.A.
        A review of scalable bioinformatics pipelines.
        Data Sci Eng. 2017; 2: 245-251
        • Callenberg K.M.
        • Santana-Santos L.
        • Chen L.
        • et al.
        Clinical implementation and validation of automated human genome variation society (HGVS) nomenclature system for next-generation sequencing-based assays for cancer.
        J Mol Diagn. 2018; 20: 628-634
        • Yen J.L.
        • Garcia S.
        • Montana A.
        • et al.
        A variant by any name: quantifying annotation discordance across tools and clinical databases.
        Genome Med. 2017; 9: 7
        • Van der Auwera G.A.
        • O’Connor B.D.
        Genomics in the cloud: using Docker, GATK, and WDL in Terra.
        1st edition. O’Reilly Media, Sebastopol2020
        • Lai Z.
        • Markovets A.
        • Ahdesmaki M.
        • et al.
        VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research.
        Nucleic Acids Res. 2016; 44: e108
        • Kim S.
        • Scheffler K.
        • Halpern A.L.
        • et al.
        Strelka2: fast and accurate calling of germline and somatic variants.
        Nat Methods. 2018; 15: 591-594
        • Schmidt R.J.
        • Macleay A.
        • Le L.P.
        VarGrouper: a bioinformatic tool for local haplotyping of deletion-insertion variants from next-generation sequencing data after variant calling.
        J Mol Diagn. 2019; 21: 384-389
        • Kadri S.
        • Sboner A.
        • Sigaras A.
        • et al.
        Containers in bioinformatics: applications, practical considerations, and best practices in molecular pathology.
        J Mol Diagn. 2022; 24: 442-454
        • Kadri S.
        • Roy S.
        Platform-agnostic deployment of bioinformatics pipelines for clinical NGS assays using containers, infrastructure orchestration, and workflow manager (Abstract #I031).
        J Mol Diagn. 2019; 21: 1119-1249
        • Kurtzer G.M.
        • Sochat V.
        • Bauer M.W.
        Singularity: scientific containers for mobility of compute.
        PLoS One. 2017; 12: e0177459