Advertisement

Copy Number Analysis in Cancer Diagnostic Testing

Published:August 22, 2022DOI:https://doi.org/10.1016/j.cll.2022.05.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Beroukhim R.
        • Mermel C.H.
        • Porter D.
        • et al.
        The landscape of somatic copy-number alteration across human cancers.
        Nature. 2010; 463: 899-905
        • Zack T.I.
        • Schumacher S.E.
        • Carter S.L.
        • et al.
        Pan-cancer patterns of somatic copy number alteration.
        Nat Genet. 2013; 45: 1134-1140
        • Ciriello G.
        • Miller M.L.
        • Aksoy B.A.
        • et al.
        Emerging landscape of oncogenic signatures across human cancers.
        Nat Genet. 2013; 45: 1127-1133
        • Vives-Usano M.
        • García Pelaez B.
        • Román Lladó R.
        • et al.
        Analysis of copy number variations in solid tumors using a next generation sequencing custom panel.
        J Mol Pathol. 2021; 2: 123-134
        • Santaguida S.
        • Amon A.
        Short- and long-term effects of chromosome mis-segregation and aneuploidy.
        Nat Rev Mol Cell Biol. 2015; 16: 473-485
        • Hieronymus H.
        • Murali R.
        • Tin A.
        • et al.
        Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death.
        Elife. 2018; 7: e37294
        • Shao X.
        • Lv N.
        • Liao J.
        • et al.
        Copy number variation is highly correlated with differential gene expression: a pan-cancer study.
        BMC Med Genet. 2019; 20: 175
        • Liang L.
        • Fang J.Y.
        • Xu J.
        Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy.
        Oncogene. 2016; 35: 1475-1482
        • Wang H.
        • Liang L.
        • Fang J.Y.
        • et al.
        Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers.
        Oncogene. 2016; 35: 2011-2019
        • Nibourel O.
        • Guihard S.
        • Roumier C.
        • et al.
        Copy-number analysis identified new prognostic marker in acute myeloid leukemia.
        Leukemia. 2017; 31: 555-564
        • Nowell P.
        • Hungerford D.
        A minute chromosome in human chronic granulocytic leukemia.
        Science. 1960; : 1497
        • Sueekantaiah C.
        • Karakousis C.P.
        • Leong S.P.L.
        • et al.
        Cytogenetic findings in liposarcoma correlate with histopathologic subtypes.
        Cancer. 1992; 69: 2484-2495
        • Hsieh J.J.
        • Le V.H.
        • Oyama T.
        • et al.
        Chromosome 3p loss–orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma.
        J Clin Oncol. 2018; 36: 3533-3539
        • Schanz J.
        • Tüchler H.
        • Solé F.
        • et al.
        New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge.
        J Clin Oncol. 2012; 30: 820-829
        • Leibowitz M.
        • Zhang C.
        • Pellman D.
        Chromothripsis: a new mechanism for rapid karyotype evolution.
        Annu Rev Genet. 2015; 49: 183-211
        • Verhaak R.G.W.
        • Bafna V.
        • Mischel P.S.
        Extrachromosomal oncogene amplification in tumour pathogenesis and evolution.
        Nat Rev Cancer. 2019; 19: 283-288
        • Mikhail F.M.
        • Heerema N.A.
        • Rao K.W.
        • et al.
        Section E6.1-6.4 of the ACMG technical standards and guidelines: chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities.
        Genet Med. 2016; 18: 635-642
        • Cooley L.D.
        • Morton C.C.
        • Sanger W.G.
        • et al.
        Section E6.5-6.8 of the ACMG technical standards and guidelines: chromosome studies of lymph node and solid tumor-acquired chromosomal abnormalities.
        Genet Med. 2016; 18: 643-648
      1. Introduction.
        in: Wan T.S. Methods in. Cancer cytogenetics: methods and protocols. 220. Springer Protocols, 2016https://doi.org/10.1385/1-59259-363-1:001
      2. Canadian College of Medical Geneticists (CCMG) Cytogenetics Committee. CCMG Practice Guidelines for Cytogenetic Analysis: Recommendations for the indications, analysis and reporting of cancer specimens. Published online 2010.

        • Chang S.
        • Mark H.
        Emerging molecular cytogenetic technologies.
        Cytobios. 1997; 90: 7-22
      3. Swerdlow S. Campo E. Harris N. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4t. International Agency for Research on Cancer, 2017
        • Thway K.
        • Wang J.
        • Swansbury J.
        • et al.
        Fluorescence in situ hybridization for MDM2 amplification as a routine ancillary diagnostic tool for suspected well-differentiated and dedifferentiated liposarcomas: experience at a tertiary center.
        Sarcoma. 2015; : 812089
        • Lee J.W.
        • Son M.H.
        • Cho H.W.
        • et al.
        Clinical significance of MYCN amplification in patients with high-risk neuroblastoma.
        Pediatr Blood Cancer. 2018; 65: e27257
        • Campbell K.
        • Gastier-Foster J.M.
        • Mann M.
        • et al.
        Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children’s Oncology Group.
        Cancer. 2017; 123: 4224-4235
        • Berbegall A.P.
        • Bogen D.
        • Pötschger U.
        • et al.
        Heterogeneous MYCN amplification in neuroblastoma: a SIOP europe neuroblastoma study.
        Br J Cancer. 2018; 118: 1502-1512
        • Enshaei A.
        • Vora A.
        • Harrison C.J.
        • et al.
        Defining low-risk high hyperdiploidy in patients with paediatric acute lymphoblastic leukaemia: a retrospective analysis of data from the UKALL97/99 and UKALL2003 clinical trials.
        Lancet Haematol. 2021; 8: e828-e839
        • Chin M.
        • Sive J.I.
        • Allen C.
        • et al.
        Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival.
        Blood Cancer J. 2017; 7: e610
        • Reis G.F.
        • Pekmezci M.
        • Hansen H.M.
        • et al.
        CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas.
        J Neuropathol Exp Neurol. 2015; 74: 442-452
        • Appay R.
        • Dehais C.
        • Maurage C.A.
        • et al.
        CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas.
        Neuro Oncol. 2019; 21: 1519-1528
        • Cantsilieris S.
        • Baird P.N.
        • White S.J.
        Molecular methods for genotyping complex copy number polymorphisms.
        Genomics. 2013; 101: 86-93
        • Redon R.
        • Carter N.P.
        Comparative Genomic Hybridization: microarray design and data interpretation.
        Methods Mol Biol. 2009; 529: 37-49
        • Peterson J.F.
        • Van Dyke D.L.
        • Hoppman N.L.
        • et al.
        The utilization of chromosomal microarray technologies for hematologic neoplasms: an ACLPS critical review.
        Am J Clin Pathol. 2018; 150: 375-384
        • Mitrakos A.
        • Kattamis A.
        • Katsibardi K.
        • et al.
        High resolution chromosomal microarray analysis (CMA) enhances the genetic profile of pediatric B-cell acute lymphoblastic leukemia patients.
        Leuk Res. 2019; 83: 106177
        • Louis D.N.
        • Perry A.
        • Reifenberger G.
        • et al.
        The 2016 World health organization classification of tumors of the central nervous system: a summary.
        Acta Neuropathol. 2016; 131: 803-820
        • Chamberlain M.C.
        • Born D.
        Prognostic significance of relative 1p/19q codeletion in oligodendroglial tumors.
        J Neurooncol. 2015; 125: 249-251
        • Van Den Bent M.J.
        • Brandes A.A.
        • Taphoorn M.J.B.
        • et al.
        Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951.
        J Clin Oncol. 2013; 31: 344-350
        • Ho S.S.
        • Urban A.E.
        • Mills R.E.
        Structural variation in the sequencing era.
        Nat Rev Genet. 2020; 21: 171-189
        • Wolf J.
        • Seto T.
        • Han J.-Y.
        • et al.
        Capmatinib in MET exon 14–mutated or MET -amplified non–small-cell lung cancer.
        N Engl J Med. 2020; 383: 944-957
        • Salomonsson A.
        • Jönsson M.
        • Isaksson S.
        • et al.
        Histological specificity of alterations and expression of KIT and KITLG in non-small cell lung carcinoma.
        Genes Chromosom Cancer. 2013; 52: 1088-1096
        • Carvajal R.D.
        • Antonescu C.R.
        • Wolchok J.D.
        • et al.
        KIT as a therapeutic target in metastatic melanoma.
        JAMA. 2011; 305: 2327-2334
        • Kakadia S.
        • Yarlagadda N.
        • Awad R.
        • et al.
        Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of us food and drug administration-approved targeted therapy in advanced melanoma.
        Onco Targets Ther. 2018; 11: 7095-7107
        • Friedlander M.
        • Moore K.N.
        • Colombo N.
        • et al.
        Patient-centred outcomes and effect of disease progression on health status in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation receiving maintenance olaparib or placebo (SOLO1): a randomised, phase 3 trial.
        Lancet Oncol. 2021; 22: 632-642
        • Tutt A.N.J.
        • Garber J.E.
        • Kaufman B.
        • et al.
        Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer.
        N Engl J Med. 2021; 384: 2394-2405
        • Sokol E.S.
        • Pavlick D.
        • Khiabanian H.
        • et al.
        Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity.
        JCO Precis Oncol. 2020; : 442-465
        • Sakamoto Y.
        • Sereewattanawoot S.
        • Suzuki A.
        A new era of long-read sequencing for cancer genomics.
        J Hum Genet. 2020; 65: 3-10
        • Karst S.M.
        • Ziels R.M.
        • Kirkegaard R.H.
        • et al.
        High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing.
        Nat Methods. 2021; 18: 165-169
        • Gross A.M.
        • Ajay S.S.
        • Rajan V.
        • et al.
        Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.
        Genet Med. 2019; 21: 1121-1130
        • Zare F.
        • Dow M.
        • Monteleone N.
        • et al.
        An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
        BMC Bioinformatics. 2017; 18: 1-13
        • Zaccaria S.
        • Raphael B.J.
        Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample tumor sequencing data.
        Nat Commun. 2020; 11https://doi.org/10.1038/s41467-020-17967-y
        • Sahajpal N.S.
        • Barseghyan H.
        • Kolhe R.
        • et al.
        Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses.
        Genes (Basel). 2021; 12: 1-11
        • Yuan Y.
        • Chung C.Y.L.
        • Chan T.F.
        Advances in optical mapping for genomic research.
        Comput Struct Biotechnol J. 2020; 18: 2051-2062
        • Lühmann J.L.
        • Stelter M.
        • Wolter M.
        • et al.
        The clinical utility of optical genome mapping for the assessment of genomic aberrations in acute lymphoblastic leukemia.
        Cancers (Basel). 2021; 13: 4388
        • Neveling K.
        • Mantere T.
        • Vermeulen S.
        • et al.
        Next-generation cytogenetics: comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping.
        Am J Hum Genet. 2021; 108: 1423-1435
        • Lestringant V.
        • Duployez N.
        • Penther D.
        • et al.
        Optical genome mapping, a promising alternative to gold standard cytogenetic approaches in a series of acute lymphoblastic leukemias.
        Genes Chromosomes Cancer. 2021; 60: 657-667
        • Goldrich D.Y.
        • Labarge B.
        • Chartrand S.
        • et al.
        Identification of somatic structural variants in solid tumors by optical genome mapping.
        J Pers Med. 2021; 11: 1-21
        • Shao L.
        • Akkari Y.
        • Cooley L.D.
        • et al.
        Chromosomal microarray analysis, including constitutional and neoplastic disease applications, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2021; https://doi.org/10.1038/s41436-021-01214-w
        • Mikhail F.M.
        • Biegel J.A.
        • Cooley L.D.
        • et al.
        Technical laboratory standards for interpretation and reporting of acquired copy-number abnormalities and copy-neutral loss of heterozygosity in neoplastic disorders: a joint consensus recommendation from the American College of Medical Genetics and Genom.
        Genet Med. 2019; 21: 1903-1915
        • Tsai M.F.
        • Chang T.H.
        • Wu S.G.
        • et al.
        EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway.
        Sci Rep. 2015; 5: 1-14
        • Fröhling S.
        • Schlenk R.F.
        • Breitruck J.
        • et al.
        Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML study group Ulm.
        Blood. 2002; 100: 4372-4380
        • Rizzolo P.
        • Silvestri V.
        • Falchetti M.
        • et al.
        Inherited and acquired alterations in development of breast cancer.
        Appl Clin Genet. 2011; 4: 145-158
        • Kallioniemi O.P.
        • Kallioniemi A.
        • Kurisu W.
        • et al.
        ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization.
        Proc Natl Acad Sci U S A. 1992; 89: 5321-5325
        • Seifert H.
        • Mohr B.
        • Thiede C.
        • et al.
        The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia.
        Leukemia. 2009; 23: 656-663
        • Fang M.
        • Becker P.S.
        • Linenberger M.
        • et al.
        Adult low-hypodiploid acute B-lymphoblastic leukemia with IKZF3 deletion and TP53 mutation: comparison with pediatric patients.
        Am J Clin Pathol. 2015; 144: 263-270
        • Rasche L.
        • Kortüm K.M.
        • Raab M.S.
        • et al.
        The impact of tumor heterogeneity on diagnostics and novel therapeutic strategies in multiple myeloma.
        Int J Mol Sci. 2019; 20: 1248
        • Cortés-Ciriano I.
        • Lee J.J.K.
        • Xi R.
        • et al.
        Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
        Nat Genet. 2020; 52: 331-341