Advertisement

Utility of Single-Gene Testing in Cancer Specimens

Published:August 22, 2022DOI:https://doi.org/10.1016/j.cll.2022.05.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kumar R.
        • Jorben J.
        • Yadav R.R.
        • et al.
        Genomics and its application in crop improvement.
        J Pharmacognosy Phytochemistry. 2020; 9: 547-552
        • Hongbao M.
        Development application polymerase chain reaction (PCR).
        J Am Sci. 2005; 1: 1-15
        • Van Dijk E.L.
        • Auger H.
        • Jaszczyszyn Y.
        • et al.
        Ten years of next-generation sequencing technology.
        Trends Genetics. 2014; 30: 418-426
        • Karlovich C.A.
        • Williams P.M.
        Clinical applications of next-generation sequencing in precision oncology.
        Cancer J. 2019; 25: 264-271
        • Ross J.S.
        • Cronin M.
        Whole cancer genome sequencing by next-generation methods.
        Am J Clin Pathol. 2011; 136: 527-539
        • Tafe L.J.
        • Arcila M.E.
        Genomic medicine: a practical guide.
        Springer, New York2019
        • Curry J.L.
        • Torres-Cabala C.A.
        • Tetzlaff M.T.
        • et al.
        Molecular platforms utilized to detect BRAF V600E mutation in melanoma.
        . 2012; 31: 267-273
        • Calvayrac O.
        • Pradines A.
        • Pons E.
        • et al.
        Molecular biomarkers for lung adenocarcinoma.
        Eur Respir J. 2017; 49https://doi.org/10.1183/13993003.01734-2016
        • Khoo C.
        • Rogers T.M.
        • Fellowes A.
        • et al.
        Molecular methods for somatic mutation testing in lung adenocarcinoma: EGFR and beyond.
        Transplant Lung Cancer Res. 2015; 4: 126-141
        • Newton C.
        • Graham A.
        • Heptinstall L.
        • et al.
        Analysis of any point mutation in DNA. the amplification refractory mutation system (ARMS).
        Nucleic Acids Res. 1989; 17: 2503-2516
        • Darawi M.N.
        • Ai-Vyrn C.
        • Ramasamy K.
        • et al.
        Allele-specific polymerase chain reaction for the detection of alzheimer’s disease-related single nucleotide polymorphisms.
        BMC Med Genet. 2013; 14: 1-8
        • Goswami R.S.
        • Harada S.
        An overview of molecular genetic diagnosis techniques.
        Curr Protoc Hum Genet. 2020; 105: e97
        • Farrar J.S.
        • Wittwer C.
        High-resolution melting curve analysis for molecular diagnostics.
        in: Patrinos G.P. Molecular diagnostics. Elsevier, Philadelphia2017: 79-102
        • Scientific T.F.
        DNA fragment analysis by capillary electrophoresis. Carlsbad: Thermo FIsher Sicentific.
        Inc. 2014;
        • Sakaguchi M.
        • Nakajima N.
        • Yamaguchi H.
        • et al.
        The sensitivity of the FLT3-ITD detection method is an important consideration when diagnosing acute myeloid leukemia.
        Leuk Res Rep. 2020; 13: 100198
        • Loyaux R.
        • Blons H.
        • Garinet S.
        • et al.
        4MO MET exon 14 screening strategy: how not to miss large deletions.
        Ann Oncol. 2020; 31: S1218
        • Kim Y.
        • Lee G.
        • Park J.
        • et al.
        Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length.
        Blood Cancer J. 2015; 5: e336
        • López-Jorge C.
        • Gómez-Casares M.
        • Jiménez-Velasco A.
        • et al.
        Comparative study of BCR-ABL1 quantification: xpert assay, a feasible solution to standardization concerns.
        Ann Hematol. 2012; 91: 1245-1250
        • Harada S.
        • Morlote D.
        Molecular pathology of colorectal cancer.
        Adv Anat Pathol. 2020; 27: 20-26
        • Van Haele M.
        • Vander Borght S.
        • Ceulemans A.
        • et al.
        Rapid clinical mutational testing of KRAS, BRAF and EGFR: a prospective comparative analysis of the idylla technique with high-throughput next-generation sequencing.
        J Clin Pathol. 2020; 73: 35-41
        • Huang H.
        • Springborn S.
        • Haug K.
        • et al.
        Evaluation, validation, and implementation of the idylla system as rapid molecular testing for precision medicine.
        J Mol Diagn. 2019; 21: 862-872
        • Tsongalis G.J.
        • Al Turkmani M.R.
        • Suriawinata M.
        • et al.
        Comparison of tissue molecular biomarker testing turnaround times and concordance between standard of care and the biocartis idylla platform in patients with colorectal cancer.
        Am J Clin Pathol. 2020; 154: 266-276
        • Dominy K.M.
        • Simon I.M.
        • Sorouri-Khorashad J.
        Evaluation of xpert® BCR-ABL ultra for the confirmation of BCR-ABL1 international scale conversion factors for the molecular monitoring of chronic myeloid leukaemia.
        Int J Lab Hematol. 2021; 43: e31-e34
        • Jobbagy Z.
        • van Atta R.
        • Murphy K.M.
        • et al.
        Evaluation of the cepheid GeneXpert BCR-ABL assay.
        J Mol Diagn. 2007; 9: 220-227
        • Pruneri G.
        • De Braud F.
        • Sapino A.
        • et al.
        Next-generation sequencing in clinical practice: is it a cost-saving alternative to a single-gene testing approach?.
        PharmacoEconomics-Open. 2021; 5: 285-298
        • Lynce F.
        • Isaacs C.
        How far do we go with genetic evaluation? gene, panel, and tumor testing.
        Am Soc Clin Oncol Educ Book. 2016; 36: e72-e78
        • Hiemenz M.C.
        • Kadauke S.
        • Lieberman D.B.
        • et al.
        Building a robust tumor profiling program: synergy between next-generation sequencing and targeted single-gene testing.
        PloS one. 2016; 11: e0152851
        • Colomer R.
        • Mondejar R.
        • Romero-Laorden N.
        • et al.
        When should we order a next generation sequencing test in a patient with cancer?.
        EClinicalMedicine. 2020; 25: 100487
        • Park E.
        • Shim H.S.
        Detection of targetable genetic alterations in Korean lung cancer patients: a comparison study of single-gene assays and targeted next-generation sequencing.
        Cancer Res Treat. 2020; 52: 543-551
        • Dalal A.A.
        • Guerin A.
        • Mutebi A.
        • et al.
        Economic analysis of BRAF gene mutation testing in real world practice using claims data: costs of single gene versus panel tests in patients with lung cancer.
        J Med Econ. 2018; 21: 649-655
        • Altimari A.
        • de Biase D.
        • De Maglio G.
        • et al.
        454 next generation-sequencing outperforms allele-specific PCR, sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples.
        Onco Targets Ther. 2013; 6: 1057-1064
        • de Biase D.
        • Acquaviva G.
        • Visani M.
        • et al.
        Molecular diagnostic of solid tumor using a next generation sequencing custom-designed multi-gene panel.
        Diagnostics. 2020; 10: 250
        • Momeni-Boroujeni A.
        • Salazar P.
        • Zheng T.
        • et al.
        Rapid EGFR mutation detection using the idylla platform: single-institution experience of 1200 cases analyzed by an in-house developed pipeline and comparison with concurrent next-generation sequencing results.
        J Mol Diagn. 2021; 23: 310-322
        • Pennell N.A.
        • Mutebi A.
        • Zhou Z.
        • et al.
        Economic impact of next-generation sequencing versus single-gene testing to detect genomic alterations in metastatic non–small-cell lung cancer using a decision analytic model.
        JCO Precision Oncol. 2019; 3: 1-9
        • Tan A.C.
        • Lai G.G.
        • San Tan G.
        • et al.
        Utility of incorporating next-generation sequencing (NGS) in an asian non-small cell lung cancer (NSCLC) population: incremental yield of actionable alterations and cost-effectiveness analysis.
        Lung Cancer. 2020; 139: 207-215
        • Kuo F.C.
        • Mar B.G.
        • Lindsley R.C.
        • et al.
        The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice.
        Blood J Am Soc Hematol. 2017; 130: 433-439
        • Aisner D.L.
        • Rumery M.D.
        • Merrick D.T.
        • et al.
        Do more with less: Tips and techniques for maximizing small biopsy and cytology specimens for molecular and ancillary testing: the university of Colorado experience.
        Arch Pathol Lab Med. 2016; 140: 1206-1220
        • Lozano M.D.
        • Echeveste J.I.
        • Abengozar M.
        • et al.
        Cytology smears in the era of molecular biomarkers in non–small cell lung cancer: doing more with less.
        Arch Pathol Lab Med. 2018; 142: 291-298
        • Canberk S.
        • Engels M.
        Cytology samples and molecular biomarker testing in lung cancer—advantages and challenges.
        Virchows Archiv. 2021; : 1-13
        • Sigel C.S.
        • Moreira A.L.
        • Travis W.D.
        • et al.
        Subtyping of non-small cell lung carcinoma: a comparison of small biopsy and cytology specimens.
        J Thorac Oncol. 2011; 6: 1849-1856
        • Roy-Chowdhuri S.
        • Aisner D.L.
        • Allen T.C.
        • et al.
        Biomarker testing in lung carcinoma cytology specimens: a perspective from members of the pulmonary pathology society.
        Arch Pathol Lab Med. 2016; 140: 1267-1272
        • Barbano R.
        • Pasculli B.
        • Coco M.
        • et al.
        Competitive allele-specific TaqMan PCR (cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in melanoma patients.
        Sci Rep. 2015; 5: 1-11
        • Ichimura K.
        Molecular pathogenesis of IDH mutations in gliomas.
        Brain Tumor Pathol. 2012; 29: 131-139
        • Dang L.
        • Jin S.
        • Su S.M.
        IDH mutations in glioma and acute myeloid leukemia.
        Trends Mol Med. 2010; 16: 387-397
        • Wongsurawat T.
        • Jenjaroenpun P.
        • De Loose A.
        • et al.
        A novel Cas9-targeted long-read assay for simultaneous detection of IDH1/2 mutations and clinically relevant MGMT methylation in fresh biopsies of diffuse glioma.
        Acta Neuropathol Commun. 2020; 8: 1-13
        • Catteau A.
        • Girardi H.
        • Monville F.
        • et al.
        A new sensitive PCR assay for one-step detection of 12 IDH1/2 mutations in glioma.
        Acta neuropathologica Commun. 2014; 2: 1-12
        • Patel K.P.
        • Barkoh B.A.
        • Chen Z.
        • et al.
        Diagnostic testing for IDH1 and IDH2 variants in acute myeloid leukemia: an algorithmic approach using high-resolution melting curve analysis.
        J Mol Diagn. 2011; 13: 678-686
        • Enjeti A.
        • Granter N.
        • Ashraf A.
        • et al.
        A longitudinal evaluation of performance of automated BCR-ABL1 quantitation using cartridge-based detection system.
        Pathology. 2015; 47: 570-574
        • Radich J.
        • Yeung C.
        • Wu D.
        New approaches to molecular monitoring in CML (and other diseases).
        Blood. 2019; 134: 1578-1584