Advertisement

Molecular Diagnostic Testing for Hematopoietic Neoplasms

Linking Pathogenic Drivers to Personalized Diagnosis

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stone R.M.
        • Mandrekar S.J.
        • Sanford B.L.
        • et al.
        Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation.
        N Engl J Med. 2017; 377: 454-464
        • Malcovati L.
        • Stevenson K.
        • Papaemmanuil E.
        • et al.
        SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS.
        Blood. 2020; 136: 157-170
        • Mendoza H.
        • Tormey C.A.
        • Rinder H.M.
        • et al.
        The utility and limitations of B- and T-cell gene rearrangement studies in evaluating lymphoproliferative disorders.
        Pathology. 2020; 53: 157-165
      1. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; 2017.

        • Hoang M.L.
        • Kinde I.
        • Tomasetti C.
        • et al.
        Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing.
        Proc Natl Acad Sci. 2016; 113: 9846-9851
        • Martincorena I.
        Somatic mutation and clonal expansions in human tissues.
        Genome Med. 2019; 11: 35
        • Steensma D.P.
        • Ebert B.L.
        Clonal hematopoiesis as a model for premalignant changes during aging.
        Exp Hematol. 2020; 83: 48-56
        • Jaiswal S.
        • Ebert B.L.
        Clonal hematopoiesis in human aging and disease.
        Science. 2019; 366: eaan4673
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Bolton K.L.
        • Ptashkin R.N.
        • Gao T.
        • et al.
        Cancer therapy shapes the fitness landscape of clonal hematopoiesis.
        Nat Genet. 2020; 52: 1219-1226
        • Dharan N.J.
        • Yeh P.
        • Bloch M.
        • et al.
        HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults.
        Nat Med. 2021; 27: 1006-1011
        • Abelson S.
        • Collord G.
        • Ng S.W.K.
        • et al.
        Prediction of acute myeloid leukaemia risk in healthy individuals.
        Nature. 2018; 559: 400-404
        • Desai P.
        • Mencia-Trinchant N.
        • Savenkov O.
        • et al.
        Somatic mutations precede acute myeloid leukemia years before diagnosis.
        Nat Med. 2018; 24: 1015-1023
        • Genovese G.
        • Kähler A.K.
        • Handsaker R.E.
        • et al.
        Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.
        N Engl J Med. 2014; 371: 2477-2487
        • Jaiswal S.
        • Natarajan P.
        • Silver A.J.
        • et al.
        Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease.
        N Engl J Med. 2017; 377: 111-121
        • Kim P.G.
        • Niroula A.
        • Shkolnik V.
        • et al.
        Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis.
        J Exp Med. 2021; 218: e20211872
        • Hecker J.S.
        • Hartmann L.
        • Rivière J.
        • et al.
        CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease.
        Blood. 2021; 138: 1727-1732
        • Xie M.
        • Lu C.
        • Wang J.
        • et al.
        Age-related cancer mutations associated with clonal hematopoietic expansion.
        Nat Med. 2014; 20: 1472-1478
        • Zink F.
        • Stacey S.N.
        • Norddahl G.L.
        • et al.
        Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly.
        Blood. 2017; 130: 742-752
        • Young A.L.
        • Challen G.A.
        • Birmann B.M.
        • et al.
        Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults.
        Nat Commun. 2016; 7: 12484
        • Feusier J.E.
        • Arunachalam S.
        • Tashi T.
        • et al.
        Large-scale identification of clonal hematopoiesis and mutations recurrent in blood cancers.
        Blood Cancer Discov. 2021; 2: 226-237
        • Kennedy J.A.
        • Ebert B.L.
        Clinical implications of genetic mutations in myelodysplastic syndrome.
        J Clin Oncol. 2017; 35: 968-997
        • DeZern A.E.
        • Malcovati L.
        • Ebert B.L.
        CHIP, CCUS, and other acronyms: definition, implications, and impact on practice.
        Am Soc Clin Oncol Educ Book. 2019; 39: 400-410
        • Gibson C.J.
        • Lindsley R.C.
        • Tchekmedyian V.
        • et al.
        Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma.
        J Clin Oncol. 2017; 35: 1598-1605
        • Saygin C.
        • Godley L.A.
        Genetics of myelodysplastic syndromes.
        Cancers. 2021; 13: 3380
        • Papaemmanuil E.
        Consortium on behalf of the CMD working group of the ICG, Gerstung M, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes.
        Blood. 2013; 122: 3616-3627
        • Khalife-Hachem S.
        • Saleh K.
        • Pasquier F.
        • et al.
        Molecular landscape of therapy-related myeloid neoplasms in patients previously treated for gynecologic and breast cancers.
        Hemasphere. 2021; 5: e632
        • Takahashi K.
        • Jabbour E.
        • Wang X.
        • et al.
        Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML.
        Leukemia. 2013; 27: 2081-2083
        • Mossner M.
        • Jann J.C.
        • Wittig J.
        • et al.
        Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure.
        Blood. 2016; 128: 1246-1259
        • Bernard E.
        • Nannya Y.
        • Hasserjian R.P.
        • et al.
        Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes.
        Nat Med. 2020; 26: 1549-1556
        • Lindsley R.C.
        • Mar B.G.
        • Mazzola E.
        • et al.
        Acute myeloid leukemia ontogeny is defined by distinct somatic mutations.
        Blood. 2015; 125: 1367-1376
        • Schanz J.
        • Tüchler H.
        • Solé F.
        • et al.
        New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge.
        J Clin Oncol. 2012; 30: 820-829
        • Döhner H.
        • Estey E.
        • Grimwade D.
        • et al.
        Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.
        Blood. 2017; 129: 424-447
        • List A.
        • Dewald G.
        • Bennett J.
        • et al.
        Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion.
        N Engl J Med. 2006; 355: 1456-1465
        • Soverini S.
        • Hochhaus A.
        • Nicolini F.E.
        • et al.
        BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet.
        Blood. 2011; 118: 1208-1215
        • Maxson J.E.
        • Gotlib J.
        • Pollyea D.A.
        • et al.
        Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML.
        N Engl J Med. 2013; 368: 1781-1790
        • McClure R.F.
        • Ewalt M.D.
        • Crow J.
        • et al.
        Clinical significance of DNA variants in chronic myeloid neoplasms a report of the association for molecular pathology.
        J Mol Diagn. 2018; 20: 717-737
        • Kiladjian J.J.
        • Zachee P.
        • Hino M.
        • et al.
        Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study.
        Lancet Haematol. 2020; 7: e226-e237
        • Ortmann C.A.
        • Kent D.G.
        • Nangalia J.
        • et al.
        Effect of mutation order on myeloproliferative neoplasms.
        N Engl J Med. 2015; 372: 601-612
        • Grinfeld J.
        • Nangalia J.
        • Baxter E.J.
        • et al.
        Classification and personalized prognosis in myeloproliferative neoplasms.
        N Engl J Med. 2018; 379: 1416-1430
        • Jawhar M.
        • Schwaab J.
        • Schnittger S.
        • et al.
        Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V+ advanced systemic mastocytosis.
        Leukemia. 2016; 30: 136-143
        • Jawhar M.
        • Schwaab J.
        • Schnittger S.
        • et al.
        Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event.
        Leukemia. 2015; 29: 1115-1122
        • Gotlib J.
        • Radia D.H.
        • George T.I.
        • et al.
        Pure pathologic response is associated with improved overall survival in patients with advanced systemic mastocytosis receiving avapritinib in the phase I explorer study.
        Blood. 2020; 136: 37-38
        • Patnaik M.M.
        • Lasho T.L.
        Genomics of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes.
        Hematology. 2020; 2020: 450-459
        • Patnaik M.M.
        • Itzykson R.
        • Lasho T.L.
        • et al.
        ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients.
        Leukemia. 2014; 28: 2206-2212
        • Elena C.
        • Gallì A.
        • Such E.
        • et al.
        Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia.
        Blood. 2016; 128: 1408-1417
        • Meggendorfer M.
        • Haferlach T.
        • Alpermann T.
        • et al.
        Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia.
        Haematologica. 2014; 99: e244-6
        • Savona M.R.
        • Malcovati L.
        • Komrokji R.
        • et al.
        An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults.
        Blood. 2015; 125: 1857-1865
        • Stieglitz E.
        • Taylor-Weiner A.N.
        • Chang T.Y.
        • et al.
        The genomic landscape of juvenile myelomonocytic leukemia.
        Nat Genet. 2015; 47: 1326-1333
        • Patnaik M.M.
        • Tefferi A.
        Refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis: “2019 Update on Diagnosis, Risk-stratification, and Management.
        Am J Hematol. 2019; 94: 475-488
        • Piazza R.
        • Valletta S.
        • Winkelmann N.
        • et al.
        Recurrent SETBP1 mutations in atypical chronic myeloid leukemia.
        Nat Genet. 2013; 45: 18-24
        • Zhang H.
        • Wilmot B.
        • Bottomly D.
        • et al.
        Genomic landscape of neutrophilic leukemias of ambiguous diagnosis.
        Blood. 2019; 134: 867-879
        • Kim A.S.
        • Hergott C.B.
        Are you a lumper or a splitter? Embrace the genomic spectrum of neutrophilic myeloid neoplasms.
        Hematologist. 2019; 17https://doi.org/10.1182/hem.v17.1.10150
        • Network C.G.A.R.
        • Ley T.J.
        • Miller C.
        • et al.
        Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.
        N Engl J Med. 2013; 368: 2059-2074https://doi.org/10.1056/nejmoa1301689
        • Godley L.A.
        Germline mutations in MDS/AML predisposition disorders.
        Curr Opin Hematol. 2020; 28: 86-93
        • Roberts K.G.
        • Mullighan C.G.
        The biology of B-progenitor acute lymphoblastic leukemia.
        Cold Spring Harb Perspect Med. 2020; 10: a034835
        • Inaba H.
        • Mullighan C.G.
        Pediatric acute lymphoblastic leukemia.
        Haematologica. 2020; 105: 0
        • Brown L.M.
        • Lonsdale A.
        • Zhu A.
        • et al.
        The application of RNA sequencing for the diagnosis and genomic classification of pediatric acute lymphoblastic leukemia.
        Blood Adv. 2020; 4: 930-942
        • Iacobucci I.
        • Kimura S.
        • Mullighan C.G.
        Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia.
        J Clin Med. 2021; 10: 3792
        • Foà R.
        • Vitale A.
        • Vignetti M.
        • et al.
        Dasatinib as first-line treatment for adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia.
        Blood. 2011; 118: 6521-6528
        • Roberts K.G.
        • Yang Y.L.
        • Payne-Turner D.
        • et al.
        Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL.
        Blood Adv. 2017; 1: 1657-1671
        • Haddox C.L.
        • Mangaonkar A.A.
        • Chen D.
        • et al.
        Blinatumomab-induced lineage switch of B-ALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and post-switch phenotypic, cytogenetic and molecular analysis.
        Blood Cancer J. 2017; 7: e607
        • Heerema N.A.
        • Carroll A.J.
        • Devidas M.
        • et al.
        Intrachromosomal amplification of Chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children’s oncology group.
        J Clin Oncol. 2013; 31: 3397-3402
        • Garcia D.R.N.
        • Arancibia A.M.
        • Ribeiro R.C.
        • et al.
        Intrachromosomal amplification of chromosome 21 (iAMP21) detected by ETV6/RUNX1 FISH screening in childhood acute lymphoblastic leukemia: a case report.
        Revista Brasileira De Hematologia E Hemoterapia. 2013; 35: 369-371
        • Gu Z.
        • Churchman M.L.
        • Roberts K.G.
        • et al.
        PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia.
        Nat Genet. 2019; 51: 296-307
        • Li J.F.
        • Dai Y.T.
        • Lilljebjörn H.
        • et al.
        Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases.
        Proc Natl Acad Sci. 2018; 115: 201814397
        • Clappier E.
        • Auclerc M.F.
        • Rapion J.
        • et al.
        An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions.
        Leukemia. 2014; 28: 70-77
        • Comeaux E.Q.
        • Mullighan C.G.
        TP53 mutations in hypodiploid acute lymphoblastic leukemia.
        Cold Spring Harb Perspect Med. 2017; 7: a026286
        • Qian M.
        • Cao X.
        • Devidas M.
        • et al.
        TP53 germline variations influence the predisposition and prognosis of B-Cell acute lymphoblastic leukemia in children.
        J Clin Oncol. 2018; 36: 591-599
        • Belver L.
        • Ferrando A.
        The genetics and mechanisms of T cell acute lymphoblastic leukaemia.
        Nat Rev Cancer. 2016; 16: 494-507
        • O’Neil J.
        • Grim J.
        • Strack P.
        • et al.
        FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors.
        J Exp Med. 2007; 204: 1813-1824
        • Pear W.S.
        • Aster J.C.
        • Scott M.L.
        • et al.
        Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles.
        J Exp Med. 1996; 183: 2283-2291
        • Weng A.P.
        • Ferrando A.A.
        • Lee W.
        • et al.
        Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia.
        Science. 2004; 306: 269-271
        • Ferrando A.A.
        • Neuberg D.S.
        • Staunton J.
        • et al.
        Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia.
        Cancer Cell. 2002; 1: 75-87
        • Girardi T.
        • Vicente C.
        • Cools J.
        • et al.
        The genetics and molecular biology of T-ALL.
        Blood. 2017; 129: 1113-1123
        • Zhang J.
        • Ding L.
        • Holmfeldt L.
        • et al.
        The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.
        Nature. 2012; 481: 157-163
        • Wang P.
        • Peng X.
        • Deng X.
        • et al.
        Diagnostic challenges in T-lymphoblastic lymphoma, early T-cell precursor acute lymphoblastic leukemia or mixed phenotype acute leukemia.
        Medicine. 2018; 97: e12743
        • Coustan-Smith E.
        • Mullighan C.G.
        • Onciu M.
        • et al.
        Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia.
        Lancet Oncol. 2009; 10: 147-156
        • Hebert J.
        • Cayuela J.M.
        • Berkeley J.
        • et al.
        Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias.
        Blood. 1994; 84: 4038-4044
        • Mullighan C.G.
        • Goorha S.
        • Radtke I.
        • et al.
        Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia.
        Nature. 2007; 446: 758-764
        • Remke M.
        • Pfister S.
        • Kox C.
        • et al.
        High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-β and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response.
        Blood. 2009; 114: 1053-1062
        • Vlierberghe P.V.
        • Ambesi-Impiombato A.
        • Keersmaecker K.D.
        • et al.
        Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia.
        Blood. 2013; 122: 74-82
        • Fattizzo B.
        • Rosa J.
        • Giannotta J.A.
        • et al.
        The physiopathology of T- cell acute lymphoblastic leukemia: focus on molecular aspects.
        Front Oncol. 2020; 10: 273
        • Shanmugam V.
        • Kim A.S.
        Genomic medicine, a practical guide.
        2019: 253-315https://doi.org/10.1007/978-3-030-22922-1_16
        • Bosch F.
        • Dalla-Favera R.
        Chronic lymphocytic leukaemia: from genetics to treatment.
        Nat Rev Clin Oncol. 2019; 16: 684-701
        • Donisi P.M.
        • Lorenzo N.D.
        • Riccardi M.
        • et al.
        Pattern and distribution of immunoglobulin VH gene usage in a cohort of B-CLl patients from a northeastern region of Italy.
        Diagn Mol Pathol. 2006; 15: 206-215
        • Dal-Bo M.
        • Giudice I.D.
        • Bomben R.
        • et al.
        B-cell receptor, clinical course and prognosis in chronic lymphocytic leukaemia: the growing saga of the IGHV3 subgroup gene usage.
        Br J Haematol. 2011; 153: 3-14
        • Landau D.A.
        • Tausch E.
        • Taylor-Weiner A.N.
        • et al.
        Mutations driving CLL and their evolution in progression and relapse.
        Nature. 2015; 526: 525-530
        • Döhner H.
        • Stilgenbauer S.
        • Benner A.
        • et al.
        Genomic aberrations and survival in chronic lymphocytic leukemia.
        N Engl J Med. 2000; 343: 1910-1916
        • Zenz T.
        • Kröber A.
        • Scherer K.
        • et al.
        Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up.
        Blood. 2008; 112: 3322-3329
        • Balatti V.
        • Bottoni A.
        • Palamarchuk A.
        • et al.
        NOTCH1 mutations in CLL associated with trisomy 12.
        Blood. 2012; 119: 329-331
        • Crombie J.
        • Davids M.S.
        IGHV mutational status testing in chronic lymphocytic leukemia.
        Am J Hematol. 2017; 92: 1393-1397
        • Gaidano G.
        • Rossi D.
        The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment.
        Hematology. 2017; 2017: 329-337
        • Qin S.C.
        • Xia Y.
        • Miao Y.
        • et al.
        MYD88 mutations predict unfavorable prognosis in Chronic Lymphocytic Leukemia patients with mutated IGHV gene.
        Blood Cancer J. 2017; 7: 651
        • Martínez-Trillos A.
        • Pinyol M.
        • Navarro A.
        • et al.
        Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome.
        Blood. 2014; 123: 3790-3796
        • Martínez-Trillos A.
        • Navarro A.
        • Aymerich M.
        • et al.
        Clinical impact of MYD88 mutations in chronic lymphocytic leukemia.
        Blood. 2016; 127: 1611-1613
        • Ahn I.E.
        • Underbayev C.
        • Albitar A.
        • et al.
        Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia.
        Blood. 2017; 129: 1469-1479
        • Ojha J.
        • Secreto C.
        • Rabe K.
        • et al.
        Monoclonal B-cell lymphocytosis is characterized by mutations in CLL putative driver genes and clonal heterogeneity many years before disease progression.
        Leukemia. 2014; 28: 2395-2398
        • Agathangelidis A.
        • Ljungström V.
        • Scarfò L.
        • et al.
        Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations.
        Haematologica. 2018; 103: 865-873
        • Niroula A.
        • Sekar A.
        • Murakami M.A.
        • et al.
        Distinction of lymphoid and myeloid clonal hematopoiesis.
        Nat Med. 2021; 27: 1921-1927
        • Alizadeh A.A.
        • Eisen M.B.
        • Davis R.E.
        • et al.
        Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
        Nature. 2000; 403: 503-511
        • Schmitz R.
        • Wright G.W.
        • Huang D.W.
        • et al.
        Genetics and pathogenesis of diffuse large B-Cell lymphoma.
        N Engl J Med. 2018; 378: 1396-1407
        • Chapuy B.
        • Stewart C.
        • Dunford A.J.
        • et al.
        Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.
        Nat Med. 2018; 24: 679-690
        • Lunning M.A.
        • Vose J.M.
        Angioimmunoblastic T-cell lymphoma: the many-faced lymphoma.
        Blood. 2017; 129: 1095-1102
        • Couronné L.
        • Bastard C.
        • Bernard O.A.
        TET2 and DNMT3A mutations in human T-Cell lymphoma.
        N Engl J Med. 2012; 366: 95-96
        • Odejide O.
        • Weigert O.
        • Lane A.A.
        • et al.
        A targeted mutational landscape of angioimmunoblastic T-cell lymphoma.
        Blood. 2014; 123: 1293-1296
        • Tiacci E.
        • Venanzi A.
        • Ascani S.
        • et al.
        High-risk clonal hematopoiesis as the origin of AITL and NPM1-mutated AML.
        N Engl J Med. 2018; 379: 981-984
        • Chiba S.
        • Sakata-Yanagimoto M.
        Advances in understanding of angioimmunoblastic T-cell lymphoma.
        Leukemia. 2020; 34: 2592-2606
        • Zang S.
        • Li J.
        • Yang H.
        • et al.
        Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis.
        J Clin Invest. 2017; 127: 2998-3012
        • Ng S.Y.
        • Brown L.
        • Stevenson K.
        • et al.
        RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in mice.
        Blood. 2018; 132: 935-947
        • Yoo H.Y.
        • Kim P.
        • Kim W.S.
        • et al.
        Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma.
        Haematologica. 2016; 101: 757-763
        • Attygalle A.D.
        • Feldman A.L.
        • Dogan A.
        ITK/SYK translocation in angioimmunoblastic T-cell lymphoma.
        Am J Surg Pathol. 2013; 37: 1456-1457
        • Fujiwara S i
        • Yamashita Y.
        • Nakamura N.
        • et al.
        High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays.
        Leukemia. 2008; 22: 1891-1898
        • Lewis N.E.
        • Petrova-Drus K.
        • Huet S.
        • et al.
        Clonal hematopoiesis in angioimmunoblastic T-cell lymphoma with divergent evolution to myeloid neoplasms.
        Blood Adv. 2020; 4: 2261-2271
        • Pastoret C.
        • Desmots-Loyer F.
        • Drillet G.
        • et al.
        Linking the KIR phenotype with STAT3 and TET2 mutations to identify chronic lymphoproliferative disorders of NK cells.
        Blood. 2021; 137: 3237-3250
        • Olson T.L.
        • Cheon H.
        • Xing J.C.
        • et al.
        Frequent somatic TET2 mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias.
        Blood. 2021; 138: 662-673
        • Almeida AC. da S.
        • Abate F.
        • Khiabanian H.
        • et al.
        The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome.
        Nat Genet. 2015; 47: 1465-1470
        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405
        • Shimoda K.
        • Shide K.
        • Kameda T.
        • et al.
        TET2 mutation in adult T-cell leukemia/lymphoma.
        J Clin Exp Hematop. 2015; 55: 145-149
        • Palomero T.
        • Couronné L.
        • Khiabanian H.
        • et al.
        Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas.
        Nat Genet. 2014; 46: 166-170
        • Spegarova J.S.
        • Lawless D.
        • Mohamad S.M.B.
        • et al.
        Germline TET2 loss of function causes childhood immunodeficiency and lymphoma.
        Blood. 2020; 136: 1055-1066
        • Rajkumar S.V.
        Multiple myeloma: 2020 update on diagnosis, risk-stratification and management.
        Am J Hematol. 2020; 95: 548-567
        • Manier S.
        • Salem K.Z.
        • Park J.
        • et al.
        Genomic complexity of multiple myeloma and its clinical implications.
        Nat Rev Clin Oncol. 2017; 14: 100-113
        • Fonseca R.
        • Debes-Marun C.S.
        • Picken E.B.
        • et al.
        The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma.
        Blood. 2003; 102: 2562-2567
        • Chretien M.L.
        • Corre J.
        • Lauwers-Cances V.
        • et al.
        Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter?.
        Blood. 2015; 126: 2713-2719
        • Smadja N.V.
        • Bastard C.
        • Brigaudeau C.
        • et al.
        Hypodiploidy is a major prognostic factor in multiple myeloma.
        Blood. 2001; 98: 2229-2238
        • Wier S.V.
        • Braggio E.
        • Baker A.
        • et al.
        Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma.
        Haematologica. 2013; 98: 1586-1592
        • Walker B.A.
        • Wardell C.P.
        • Murison A.
        • et al.
        APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma.
        Nat Commun. 2015; 6: 6997
        • Maura F.
        • Bolli N.
        • Angelopoulos N.
        • et al.
        Genomic landscape and chronological reconstruction of driver events in multiple myeloma.
        Nat Commun. 2019; 10: 3835
        • Sonneveld P.
        • Avet-Loiseau H.
        • Lonial S.
        • et al.
        Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group.
        Blood. 2016; 127: 2955-2962
        • Ross F.M.
        • Chiecchio L.
        • Dagrada G.
        • et al.
        The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance.
        Haematologica. 2010; 95: 1221-1225
        • Avet-Loiseau H.
        • Leleu X.
        • Roussel M.
        • et al.
        Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p).
        J Clin Oncol. 2010; 28: 4630-4634
        • Avet-Loiseau H.
        • Li C.
        • Magrangeas F.
        • et al.
        Prognostic significance of copy-number alterations in multiple myeloma.
        J Clin Oncol. 2009; 27: 4585-4590
        • Drach J.
        • Ackermann J.
        • Fritz E.
        • et al.
        Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy.
        Blood. 1998; 92: 802-809
        • Hebraud B.
        • Leleu X.
        • Lauwers-Cances V.
        • et al.
        Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients.
        Leukemia. 2014; 28: 675-679
        • Walker B.A.
        • Boyle E.M.
        • Wardell C.P.
        • et al.
        Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma.
        J Clin Oncol. 2015; 33: 3911-3920
        • Bolli N.
        • Biancon G.
        • Moarii M.
        • et al.
        Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups.
        Leukemia. 2018; 32: 2604-2616
        • Bustoros M.
        • Sklavenitis-Pistofidis R.
        • Park J.
        • et al.
        Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression.
        J Clin Oncol. 2020; 38: 2380-2389
        • Kortüm K.M.
        • Mai E.K.
        • Hanafiah N.H.
        • et al.
        Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes.
        Blood. 2016; 128: 1226-1233