Advertisement

Panel Sequencing for Targeted Therapy Selection in Solid Tumors

Published:August 22, 2022DOI:https://doi.org/10.1016/j.cll.2022.04.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sanger F.
        • Coulson A.R.
        A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase.
        J Mol Biol. 1975; 94: 441-448
        • Rehm H.L.
        • Bale S.J.
        • Bayrak-Toydemir P.
        • et al.
        ACMG clinical laboratory standards for next-generation sequencing.
        Genet Med. 2013; 15: 733-747
        • Tsiatis A.C.
        • Norris-Kirby A.
        • Rich R.G.
        • et al.
        Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications.
        J Mol Diagn. 2010; 12: 425-432
        • Sheikine Y.
        • Rangachari D.
        • McDonald D.C.
        • et al.
        EGFR testing in advanced non–small-cell lung cancer, a mini-review.
        Clinical Lung Cancer. 2016; 17: 483-492
        • Cabel L.
        • Proudhon C.
        • Romano E.
        • et al.
        Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy.
        Nat Rev Clin Oncol. 2018; 15: 639-650
        • MacConaill L.E.
        • Garcia E.
        • Shivdasani P.
        • et al.
        Prospective enterprise-level molecular genotyping of a cohort of cancer patients.
        J Mol Diagn. 2014; 16: 660-672
        • Su Z.
        • Dias-Santagata D.
        • Duke M.
        • et al.
        A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer.
        J Mol Diagn. 2011; 13: 74-84
        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • et al.
        Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2021; 71: 209-249
        • Steuten L.
        • Goulart B.
        • Meropol N.J.
        • Pritchard D.
        • Ramsey S.D.
        Cost effectiveness of multigene panel sequencing for patients with advanced non-small-cell lung cancer.
        JCO Clin Cancer Inform. 2019; 3: 1-10
        • Fukuoka M.
        • Yano S.
        • Giaccone G.
        • et al.
        Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected].
        J Clin Oncol. 2003; 21: 2237-2246
        • Bareschino M.A.
        • Schettino C.
        • Troiani T.
        • Martinelli E.
        • Morgillo F.
        • Ciardiello F.
        Erlotinib in cancer treatment.
        Ann Oncol. 2007; 18: vi35-vi41
        • Lynch T.J.
        • Bell D.W.
        • Sordella R.
        • et al.
        Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib.
        N Engl J Med. 2004; 350: 2129-2139
        • Paez J.G.
        • Janne P.A.
        • Lee J.C.
        • et al.
        EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.
        Science. 2004; 304: 1497-1500
        • Soda M.
        • Choi Y.L.
        • Enomoto M.
        • et al.
        Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.
        Nature. 2007; 448: 561-566
        • Solomon B.J.
        • Mok T.
        • Kim D.W.
        • et al.
        First-line crizotinib versus chemotherapy in ALK-positive lung cancer.
        N Engl J Med. 2014; 371: 2167-2177
        • Lindeman N.I.
        • Cagle P.T.
        • Beasley M.B.
        • et al.
        Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology.
        J Mol Diagn. 2013; 15: 415-453
        • Konig D.
        • Savic Prince S.
        • Rothschild S.I.
        Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations.
        Cancers (Basel). 2021; 13https://doi.org/10.3390/cancers13040804
        • Shaw A.T.
        • Riely G.J.
        • Bang Y.J.
        • et al.
        Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001.
        Ann Oncol. 2019; 30: 1121-1126
        • Vansteenkiste J.F.
        • Van De Kerkhove C.
        • Wauters E.
        • Van Mol P.
        Capmatinib for the treatment of non-small cell lung cancer.
        Expert Rev Anticancer Ther. 2019; 19: 659-671
        • Drilon A.
        • Laetsch T.W.
        • Kummar S.
        • et al.
        Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children.
        N Engl J Med. 2018; 378: 731-739
        • Arcila M.E.
        • Nafa K.
        • Chaft J.E.
        • et al.
        EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics.
        Mol Cancer Ther. 2013; 12: 220-229
        • Socinski M.A.
        • Pennell N.A.
        • Davies K.D.
        MET exon 14 skipping mutations in non-small-cell lung cancer: an overview of biology, clinical outcomes, and testing considerations.
        JCO Precis Oncol. 2021; https://doi.org/10.1200/PO.20.00516
        • Benayed R.
        • Offin M.
        • Mullaney K.
        • et al.
        High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden.
        Clin Cancer Res. 2019; 25: 4712-4722
        • Lindeman N.I.
        • Cagle P.T.
        • Aisner D.L.
        • et al.
        Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology.
        J Mol Diagn. 2018; 20: 129-159
        • Ettinger D.S.
        • Wood D.E.
        • Aisner D.L.
        • et al.
        NCCN guidelines insights: non-small cell lung cancer, version 2.2021.
        J Natl Compr Canc Netw. 2021; 19: 254-266
      1. Network NCC. Non-small cell lung cancer. Accessed January 1, 2022.

        • Mosele F.
        • Remon J.
        • Mateo J.
        • et al.
        Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group.
        Ann Oncol. 2020; 31: 1491-1505
        • Leonetti A.
        • Sharma S.
        • Minari R.
        • Perego P.
        • Giovannetti E.
        • Tiseo M.
        Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer.
        Br J Cancer. 2019; 121: 725-737
        • Rotow J.
        • Bivona T.G.
        Understanding and targeting resistance mechanisms in NSCLC.
        Nat Rev Cancer. 2017; 17: 637-658
        • Mo H.R.
        • Catherine
        Biomarker-driven targeted therapies in solid tumor malignancies.
        J Hematol Oncol Pharm. 2021; 11: 84-91
        • Keeling P.
        • Clark J.
        • Finucane S.
        Challenges in the clinical implementation of precision medicine companion diagnostics.
        Expert Rev Mol Diagn. 2020; 20: 593-599
        • Chan T.A.
        • Yarchoan M.
        • Jaffee E.
        • et al.
        Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.
        Ann Oncol. 2019; 30: 44-56
        • Nowak J.A.
        • Yurgelun M.B.
        • Bruce J.L.
        • et al.
        Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing.
        J Mol Diagn. 2017; 19: 84-91
        • Middha S.
        • Zhang L.
        • Nafa K.
        • et al.
        Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data.
        JCO Precis Oncol. 2017; https://doi.org/10.1200/PO.17.00084
        • Long D.R.
        • Waalkes A.
        • Panicker V.P.
        • Hause R.J.
        • Salipante S.J.
        Identifying optimal loci for the molecular diagnosis of microsatellite instability.
        Clin Chem. 2020; 66: 1310-1318
        • Alexandrov L.B.
        • Nik-Zainal S.
        • Wedge D.C.
        • Campbell P.J.
        • Stratton M.R.
        Deciphering signatures of mutational processes operative in human cancer.
        Cell Rep. 2013; 3: 246-259
        • Alexandrov L.B.
        • Nik-Zainal S.
        • Wedge D.C.
        • et al.
        Signatures of mutational processes in human cancer.
        Nature. 2013; 500: 415-421
        • Lawrence L.
        • Kunder C.A.
        • Fung E.
        • Stehr H.
        • Zehnder J.
        Performance characteristics of mutational signature analysis in targeted panel sequencing.
        Arch Pathol Lab Med. 2021; 145: 1424-1431
        • Vega D.M.
        • Yee L.M.
        • McShane L.M.
        • et al.
        Aligning tumor mutational burden (TMB) quantification across diagnostic platforms: phase II of the Friends of Cancer Research TMB Harmonization Project.
        Ann Oncol. 2021; 32: 1626-1636
        • van Nimwegen K.J.M.
        • van Soest R.A.
        • Veltman J.A.
        • et al.
        Is the $1000 genome as near as we think? A cost analysis of next-generation sequencing.
        Clin Chem. 2016; 62: 1458-1464
        • Sireci A.N.
        • Patel J.L.
        • Joseph L.
        • et al.
        Molecular Pathology economics 101: an overview of molecular diagnostics coding, coverage, and reimbursement: a report of the association for molecular Pathology.
        J Mol Diagn. 2020; 22: 975-993
        • Hsiao S.J.
        • Sireci A.N.
        • Pendrick D.
        • et al.
        Clinical utilization, utility, and reimbursement for expanded genomic panel testing in adult oncology.
        JCO Precision Oncol. 2020; : 1038-1048
        • Pennell N.A.
        • Mutebi A.
        • Zhou Z.-Y.
        • et al.
        Economic impact of next-generation sequencing versus single-gene testing to detect genomic alterations in metastatic non–small-cell lung cancer using a decision analytic model.
        JCO Precision Oncol. 2019; 3: 1-9
        • Aisner D.L.
        • Sholl L.M.
        • Berry L.D.
        • et al.
        The impact of smoking and TP53 mutations in lung adenocarcinoma patients with targetable mutations—the Lung Cancer Mutation Consortium (LCMC2).
        Clin Cancer Res. 2018; 24: 1038-1047
        • Liu S.Y.
        • Bao H.
        • Wang Q.
        • et al.
        Genomic signatures define three subtypes of EGFR-mutant stage II-III non-small-cell lung cancer with distinct adjuvant therapy outcomes.
        Nat Commun. 2021; 12: 6450
        • Chua K.P.
        • Teng Y.H.F.
        • Tan A.C.
        • et al.
        Integrative profiling of T790M-negative EGFR-mutated NSCLC reveals pervasive lineage transition and therapeutic opportunities.
        Clin Cancer Res. 2021; 27: 5939-5950
        • Skoulidis F.
        • Goldberg M.E.
        • Greenawalt D.M.
        • et al.
        STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma.
        Cancer Discov. 2018; 8: 822-835
        • Ricciuti B.
        • Arbour K.C.
        • Lin J.J.
        • et al.
        Diminished efficacy of programmed death-(ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status.
        J Thorac Oncol. 2021; https://doi.org/10.1016/j.jtho.2021.10.013
        • Schoenfeld A.J.
        • Bandlamudi C.
        • Lavery J.A.
        • et al.
        The genomic landscape of SMARCA4 alterations and associations with outcomes in patients with lung cancer.
        Clin Cancer Res. 2020; 26: 5701-5708
        • Alessi J.V.
        • Ricciuti B.
        • Spurr L.F.
        • et al.
        SMARCA4 and other SWItch/sucrose nonfermentable family genomic alterations in NSCLC: clinicopathologic characteristics and outcomes to immune checkpoint inhibition.
        J Thorac Oncol. 2021; 16: 1176-1187
        • Zeng J.
        • Shufean M.A.
        Molecular-based precision oncology clinical decision making augmented by artificial intelligence.
        Emerg Top Life Sci. 2021; 5: 757-764
        • Asada K.
        • Kaneko S.
        • Takasawa K.
        • et al.
        Integrated analysis of whole genome and epigenome data using machine learning technology: toward the establishment of precision oncology.
        Front Oncol. 2021; 11: 666937https://doi.org/10.3389/fonc.2021.666937
        • Watkins P.J.
        • Gorrod J.W.
        Studies on the in vitro biological N-oxidation of trimethoprim.
        Eur J Drug Metab Pharmacokinet. 1987; 12: 245-251
        • Takamatsu S.
        • Brown J.B.
        • Yamaguchi K.
        • et al.
        Utility of homologous recombination deficiency biomarkers across cancer types.
        JCO Precis Oncol. 2021; https://doi.org/10.1200/PO.21.00141
        • Stover E.H.
        • Fuh K.
        • Konstantinopoulos P.A.
        • Matulonis U.A.
        • Liu J.F.
        Clinical assays for assessment of homologous recombination DNA repair deficiency.
        Gynecol Oncol. 2020; 159: 887-898
        • Kroeze L.I.
        • de Voer R.M.
        • Kamping E.J.
        • et al.
        Evaluation of a hybrid capture–based pan-cancer panel for analysis of treatment stratifying oncogenic aberrations and processes.
        J Mol Diagn. 2020; 22: 757-769