Advertisement

Specimen Considerations in Molecular Oncology Testing

Published:August 22, 2022DOI:https://doi.org/10.1016/j.cll.2022.04.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kasraeian S.
        • Allison D.C.
        • Ahlmann E.R.
        • et al.
        A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses.
        ClinOrthopRelat Res. 2010; 468: 2992-3002
        • Roy-Chowdhuri S.
        • Chen H.
        • Singh R.R.
        • et al.
        Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies.
        Mod Pathol. 2017; 30: 499-508
        • Klein A.
        • Fell T.
        • Birkenmaier C.
        • et al.
        Relative sensitivity of core-needle biopsy and incisional biopsy in the diagnosis of musculoskeletal sarcomas.
        Cancers (Basel). 2021; 13: 1393
        • Birgin E.
        • Yang C.
        • Hetjens S.
        • et al.
        Core needle biopsy versus incisional biopsy for differentiation of soft-tissue sarcomas: a systematic review and meta-analysis.
        Cancer. 2020; 126: 1917-1928
        • Joudeh A.A.
        • Shareef S.Q.
        • Al-Abbadi M.A.
        Fine-needle aspiration followed by core-needle biopsy in the same setting: modifying our approach.
        ActaCytol. 2016; 60: 1-13
        • VanderLaan P.A.
        Fine-needle aspiration and core needle biopsy: an update on 2 common minimally invasive tissue sampling modalities.
        Cancer Cytopathol. 2016; 124: 862-870
        • Chen L.
        • Jing H.
        • Gong Y.
        • et al.
        Diagnostic efficacy and molecular testing by combined fine needle aspiration and core needle biopsy in patients with a lung nodule.
        Cancer Cytopathol. 2020; 128: 201-206
        • Goswami R.S.
        • Luthra R.
        • Singh R.R.
        • et al.
        Identification of factors affecting the success of next-generation sequencing testing in solid tumors.
        Am J ClinPathol. 2016; 145: 222-237
        • Roy-Chowdhuri S.
        • Stewart J.
        Preanalytic variables in cytology: lessons learned from next-generation sequencing-the MD Anderson experience.
        Arch Pathol Lab Med. 2016; 140: 1191-1199
        • Sehgal I.S.
        • Dhooria S.
        • Aggarwal A.N.
        • et al.
        Impact of rapid on-site cytological evaluation (ROSE) on the diagnostic yield of transbronchial needle aspiration during mediastinal lymph node sampling: systematic review and meta-analysis.
        Chest. 2018; 153: 929-938
        • Collins B.T.
        • Murad F.M.
        • Wang J.F.
        • et al.
        Rapid on-site evaluation for endoscopic ultrasound-guided fine-needle biopsy of the pancreas decreases the incidence of repeat biopsy procedures.
        Cancer Cytopathol. 2013; 121: 518-524
        • Ishizawa T.
        • Makino N.
        • Matsuda A.
        • et al.
        Usefulness of rapid on-site evaluation specimens from endoscopic ultrasound-guided fine-needle aspiration for cancer gene panel testing: a retrospective study.
        PLoS One. 2020; 15: e0228565
        • Sandoh K.
        • Ishida M.
        • Okano K.
        • et al.
        Utility of endoscopic ultrasound-guided fine-needle aspiration cytology in rapid on-site evaluation for the diagnosis of gastric submucosal tumors: retrospective analysis of a single-center experience.
        DiagnCytopathol. 2019; 47: 869-875
        • Tamura T.
        • Yamashita Y.
        • Ueda K.
        • et al.
        Rapid on-site evaluation by endosonographers during endoscopic ultrasonography-guided fine-needle aspiration for diagnosis of gastrointestinal stromal tumors.
        ClinEndosc. 2017; 50: 372-378
        • Sauter J.L.
        • Chen Y.
        • Alex D.
        • et al.
        Results from the 2019 American Society of Cytopathology survey on rapid onsite evaluation (ROSE)-part 2: subjective views among the cytopathology community.
        J Am SocCytopathol. 2020; 9: 570-578
        • VanderLaan P.A.
        • Chen Y.
        • Alex D.
        • et al.
        Results from the 2019 American Society of Cytopathology survey on rapid on-site evaluation-Part 1: objective practice patterns.
        J Am SocCytopathol. 2019; 8: 333-341
        • Pantanowitz L.
        • Sinard J.H.
        • Henricks W.H.
        • et al.
        Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center.
        Arch Pathol Lab Med. 2013; 137: 1710-1722
        • Lin O.
        Telecytology for rapid on-site evaluation: current status.
        J Am SocCytopathol. 2018; 7: 1-6
        • Lin O.
        • Rudomina D.
        • Feratovic R.
        • et al.
        Rapid on-site evaluation using telecytology: a major cancer center experience.
        DiagnCytopathol. 2019; 47: 15-19
        • Sirintrapun S.J.
        • Rudomina D.
        • Mazzella A.
        • et al.
        Robotic telecytology for remote cytologic evaluation without an on-site cytotechnologist or cytopathologist: an active quality assessment and experience of over 400 cases.
        J Pathol Inform. 2017; 8: 35
        • Srinivasan M.
        • Sedmak D.
        • Jewell S.
        Effect of fixatives and tissue processing on the content and integrity of nucleic acids.
        Am J Pathol. 2002; 161: 1961-1971
        • Williams C.
        • Ponten F.
        • Moberg C.
        • et al.
        A high frequency of sequence alterations is due to formalin fixation of archival specimens.
        Am J Pathol. 1999; 155: 1467-1471
        • Buonocore D.J.
        • Konno F.
        • Jungbluth A.A.
        • et al.
        CytoLyt fixation significantly inhibits MIB1immunoreactivity whereas alternative Ki-67 clone 30-9 is not susceptible to the inhibition: critical diagnostic implications.
        Cancer Cytopathology. 2019; 127: 643-649
        • Gruchy J.R.
        • Barnes P.J.
        • Dakin Hache K.A.
        CytoLyt(R) fixation and decalcification pretreatments alter antigenicity in normal tissues compared with standard formalin fixation.
        ApplImmunohistochemMolMorphol. 2015; 23: 297-302
        • Panzacchi S.
        • Gnudi F.
        • Mandrioli D.
        • et al.
        Effects of short and long-term alcohol-based fixation on Sprague-Dawley rat tissue morphology, protein and nucleic acid preservation.
        ActaHistochem. 2019; 121: 750-760
        • Aisner D.L.
        • Rumery M.D.
        • Merrick D.T.
        • et al.
        Do more with less: tips and techniques for maximizing small biopsy and cytology specimens for molecular and ancillary testing: the university of Colorado experience.
        Arch Pathol Lab Med. 2016; 140: 1206-1220
        • Gomes-Lima C.J.
        • Shobab L.
        • Wu D.
        • et al.
        Do molecular profiles of primary versus metastatic radioiodine refractory differentiated thyroid cancer differ?.
        Front Endocrinol. 2021; 12: 623182
        • Lee C.C.
        • Soon Y.Y.
        • Lum J.H.Y.
        • et al.
        Frequency of discordance in programmed death-ligand 1 (PD-L1) expression between primary tumors and paired distant metastases in advanced cancers: a systematic review and meta-analysis.
        ActaOncol. 2020; 59: 696-704
        • Manson Q.F.
        • Schrijver W.
        • TerHoeve N.D.
        • et al.
        Frequent discordance in PD-1 and PD-L1 expression between primary breast tumors and their matched distant metastases.
        ClinExpMetastasis. 2019; 36: 29-37
        • Naso J.R.
        • Banyi N.
        • Al-Hashami Z.
        • et al.
        Discordance in PD-L1 scores on repeat testing of non-small cell lung carcinomas.
        Cancer Treat Res Commun. 2021; 27: 100353
        • Nambirajan A.
        • Jain D.
        Cell blocks in cytopathology: an update.
        Cytopathology. 2018; 29: 505-524
        • Kanagal-Shamanna R.
        • Portier B.P.
        • Singh R.R.
        • et al.
        Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics.
        Mod Pathol. 2014; 27: 314-327
        • Khode R.
        • Larsen D.A.
        • Culbreath B.C.
        • et al.
        Comparative study of epidermal growth factor receptor mutation analysis on cytology smears and surgical pathology specimens from primary and metastatic lung carcinomas.
        Cancer Cytopathol. 2013; 121: 361-369
        • Velizheva N.P.
        • Rechsteiner M.P.
        • Wong C.E.
        • et al.
        Cytology smears as excellent starting material for next-generation sequencing-based molecular testing of patients with adenocarcinoma of the lung.
        Cancer Cytopathol. 2017; 125: 30-40
        • Fielding D.
        • Dalley A.J.
        • Bashirzadeh F.
        • et al.
        Diff-quik cytology smears from endobronchial ultrasound transbronchial needle aspiration lymph node specimens as a source of DNA for next-generation sequencing instead of cell blocks.
        Respiration. 2019; 97: 525-539
        • Ramani N.S.
        • Chen H.
        • Broaddus R.R.
        • et al.
        Utilization of cytology smears improves success rates of RNA-based next-generation sequencing gene fusion assays for clinically relevant predictive biomarkers.
        Cancer Cytopathol. 2021; 129: 374-382
        • Doxtader E.E.
        • Cheng Y.W.
        • Zhang Y.
        Molecular testing of non-small cell lung carcinoma diagnosed by endobronchial ultrasound-guided transbronchial fine-needle aspiration: the cleveland clinic experience.
        Arch Pathol Lab Med. 2019; 143: 670-676
        • Bellevicine C.
        • Malapelle U.
        • Vigliar E.
        • et al.
        Epidermal growth factor receptor test performed on liquid-based cytology lung samples: experience of an academic referral center.
        ActaCytol. 2014; 58: 589-594
        • Malapelle U.
        • Mayo-de-Las-Casas C.
        • Molina-Vila M.A.
        • et al.
        Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens.
        Cancer Cytopathol. 2017; 125: 615-626
        • Roy-Chowdhuri S.
        • Mehrotra M.
        • Bolivar A.M.
        • et al.
        Salvaging the supernatant: next generation cytopathology for solid tumor mutation profiling.
        Mod Pathol. 2018; 31: 1036-1045
        • Finkelstein S.D.
        • Bibbo M.
        • Kowalski T.E.
        • et al.
        Mutational analysis of cytocentrifugation supernatant fluid from pancreatic solid mass lesions.
        DiagnCytopathol. 2014; 42: 719-725
        • Krane J.F.
        • Cibas E.S.
        • Alexander E.K.
        • et al.
        Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity.
        Cancer Cytopathol. 2015; 123: 356-361
        • Kwon H.
        • Kim W.G.
        • Eszlinger M.
        • et al.
        Molecular diagnosis using residual liquid-based cytology materials for patients with nondiagnostic or indeterminate thyroid nodules.
        EndocrinolMetab(Seoul). 2016; 31: 586-591
        • Ye W.
        • Hannigan B.
        • Zalles S.
        • et al.
        Centrifuged supernatants from FNA provide a liquid biopsy option for clinical next-generation sequencing of thyroid nodules.
        Cancer Cytopathol. 2019; 127: 146-160
        • Guibert N.
        • Tsukada H.
        • Hwang D.H.
        • et al.
        Liquid biopsy of fine-needle aspiration supernatant for lung cancer genotyping.
        Lung Cancer. 2018; 122: 72-75
        • Michela B.
        Liquid biopsy: a family of possible diagnostic tools.
        Diagnostics (Basel). 2021; 11: 1391
        • Schwarzenbach H.
        • Hoon D.S.B.
        • Pantel K.
        Cell-free nucleic acids as biomarkers in cancer patients.
        Nat Rev Cancer. 2011; 11: 426-437
        • Rolfo C.
        • Mack P.C.
        • Scagliotti G.V.
        • et al.
        Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC.
        J ThoracOncol. 2018; 13: 1248-1268
        • Ignatiadis M.
        • Sledge G.W.
        • Jeffrey S.S.
        Liquid biopsy enters the clinic - implementation issues and future challenges.
        Nat Rev ClinOncol. 2021; 18: 297-312
        • Russano M.
        • Napolitano A.
        • Ribelli G.
        • et al.
        Liquid biopsy and tumor heterogeneity in metastatic solid tumors: the potentiality of blood samples.
        J ExpClinCancer Res. 2020; 39: 95
        • Diehl F.
        • Schmidt K.
        • Choti M.A.
        • et al.
        Circulating mutant DNA to assess tumor dynamics.
        Nat Med. 2008; 14: 985-990
        • Sorensen B.S.
        • Wu L.
        • Wei W.
        • et al.
        Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib.
        Cancer. 2014; 120: 3896-3901
        • Diaz Jr., L.A.
        • Williams R.T.
        • Wu J.
        • et al.
        The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers.
        Nature. 2012; 486: 537-540
        • Lin C.C.
        • Huang W.L.
        • Wei F.
        • et al.
        Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer.
        Expert Rev MolDiagn. 2015; 15: 1427-1440
        • Hindson C.M.
        • Chevillet J.R.
        • Briggs H.A.
        • et al.
        Absolute quantification by droplet digital PCR versus analog real-time PCR.
        Nat Methods. 2013; 10: 1003-1005
        • Chen M.
        • Zhao H.
        Next-generation sequencing in liquid biopsy: cancer screening and early detection.
        Hum Genomics. 2019; 13: 34
        • Garcia-Foncillas J.
        • Alba E.
        • Aranda E.
        • et al.
        Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review.
        Ann Oncol. 2017; 28: 2943-2949
        • Roy-Chowdhuri S.
        • Goswami R.S.
        • Chen H.
        • et al.
        Factors affecting the success of next-generation sequencing in cytology specimens.
        Cancer Cytopathol. 2015; 123: 659-668
        • Ranek L.
        Cytophotometric studies of the DNA, nucleic acid and protein content of human liver cell nuclei.
        ActaCytol. 1976; 20: 151-157
        • Jennings L.J.
        • Arcila M.E.
        • Corless C.
        • et al.
        Guidelines for validation of next-generation sequencing-based oncology panels: a Joint consensus recommendation of the association for molecular pathology and college of American pathologists.
        J MolDiagn. 2017; 19: 341-365
        • Chen H.
        • Luthra R.
        • Goswami R.S.
        • et al.
        Analysis of pre-analytic factors affecting the success of clinical next-generation sequencing of solid organ malignancies.
        Cancers (Basel). 2015; 7: 1699-1715
        • Jabbar K.
        • Routbort M.
        • Singh C.
        • et al.
        Impact of tumor necrosis on success of clinical next generation sequencing.
        Mod Pathol. 2015; 28: 501a
        • El-Deiry W.S.
        • Goldberg R.M.
        • Lenz H.J.
        • et al.
        The current state of molecular testing in the treatment of patients with solid tumors, 2019.
        CACancer J Clin. 2019; 69: 305-343
        • Bass B.P.
        • Engel K.B.
        • Greytak S.R.
        • et al.
        A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen?.
        Arch Pathol Lab Med. 2014; 138: 1520-1530
        • da Cunha Santos G.
        • Saieg M.A.
        Preanalytic specimen triage: smears, cell blocks, cytospin preparations, transport media, and cytobanking.
        Cancer Cytopathol. 2017; 125: 455-464
        • Padmanabhan V.
        • Steinmetz H.B.
        • Rizzo E.J.
        • et al.
        Improving adequacy of small biopsy and fine-needle aspiration specimens for molecular testing by next-generation sequencing in patients with lung cancer: a quality improvement study at Dartmouth-Hitchcock medical center.
        Arch Pathol Lab Med. 2017; 141: 402-409
        • Sholl L.M.
        • Xiao Y.
        • Joshi V.
        • et al.
        EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry.
        Am J ClinPathol. 2010; 133: 922-934
        • Hinrichs J.W.
        • van Blokland W.T.
        • Moons M.J.
        • et al.
        Comparison of next-generation sequencing and mutation-specific platforms in clinical practice.
        Am J ClinPathol. 2015; 143: 573-578
        • Majeed U.
        • Manochakian R.
        • Zhao Y.
        • et al.
        Targeted therapy in advanced non-small cell lung cancer: current advances and future trends.
        J HematolOncol. 2021; 14: 108
        • Davies K.D.
        • Lomboy A.
        • Lawrence C.A.
        • et al.
        DNA-based versus RNA-based detection of MET exon 14 skipping events in lung cancer.
        J ThoracOncol. 2019; 14: 737-741
        • Byron S.A.
        • Van Keuren-Jensen K.R.
        • Engelthaler D.M.
        • et al.
        Translating RNA sequencing into clinical diagnostics: opportunities and challenges.
        Nat Rev Genet. 2016; 17: 257-271
        • Kirchner M.
        • Neumann O.
        • Volckmar A.L.
        • et al.
        RNA-based detection of gene fusions in formalin-fixed and paraffin-embedded solid cancer samples.
        Cancers (Basel). 2019; 11: 1309
        • Goytain A.
        • Ng T.
        NanoStringnCounter technology: high-throughput RNA validation.
        MethodsMol Biol. 2020; 2079: 125-139
        • Aguado C.
        • Gimenez-Capitan A.
        • Roman R.
        • et al.
        RNA-based multiplexing assay for routine testing of fusion and splicing variants in cytological samples of NSCLC patients.
        Diagnostics (Basel). 2020; 11: 15
        • Gentien D.
        • Piqueret-Stephan L.
        • Henry E.
        • et al.
        Digital multiplexed gene expression analysis of mRNA and miRNA from routinely processed and stained cytological smears: a proof-of-principle study.
        ActaCytol. 2021; 65: 88-98
        • Reuss D.E.
        • Sahm F.
        • Schrimpf D.
        • et al.
        ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated" diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma.
        ActaNeuropathol. 2015; 129: 133-146
        • Ancevski Hunter K.
        • Socinski M.A.
        • Villaruz L.C.
        PD-L1 testing in guiding patient selection for PD-1/PD-L1 inhibitor therapy in lung cancer.
        MolDiagnTher. 2018; 22: 1-10
        • Cheung C.C.
        • Barnes P.
        • Bigras G.
        • et al.
        Fit-for-purpose PD-L1 biomarker testing for patient selection in immuno-oncology: Guidelines for clinical laboratories from the Canadian association of pathologists-Association canadienneDes pathologistes (CAP-ACP).
        ApplImmunohistochemMolMorphol. 2019; 27: 699-714
        • Asaoka Y.
        • Ijichi H.
        • Koike K.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 373: 1979
        • Le D.T.
        • Durham J.N.
        • Smith K.N.
        • et al.
        Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
        Science. 2017; 357: 409-413
        • Heymann J.J.
        • Bulman W.A.
        • Swinarski D.
        • et al.
        PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens.
        Cancer Cytopathol. 2017; 125: 896-907
        • Jacobi E.M.
        • Landon G.
        • Broaddus R.R.
        • et al.
        Evaluating mismatch repair/microsatellite instability status using cytology effusion specimens to determine eligibility for immunotherapy.
        Arch Pathol Lab Med. 2020; 145: 46-54
        • Lozano M.D.
        • Abengozar-Muela M.
        • Echeveste J.I.
        • et al.
        Programmed death-ligand 1 expression on direct Pap-stained cytology smears from non-small cell lung cancer: comparison with cell blocks and surgical resection specimens.
        Cancer Cytopathol. 2019; 127: 470-480
        • Pisapia P.
        • Lozano M.D.
        • Vigliar E.
        • et al.
        ALK and ROS1 testing on lung cancer cytologic samples: Perspectives.
        Cancer Cytopathol. 2017; 125: 817-830
        • Buonocore D.J.
        • Fowle E.
        • Lin O.
        • et al.
        Cytologic evaluation of p16 staining in head and neck squamous cell carcinoma in CytoLyt versus formalin-fixed material.
        Cancer Cytopathol. 2019; 127: 750-756
        • Gong Y.
        • Symmans W.F.
        • Krishnamurthy S.
        • et al.
        Optimal fixation conditions for immunocytochemical analysis of estrogen receptor in cytologic specimens of breast carcinoma.
        Cancer. 2004; 102: 34-40
        • Wang H.
        • Agulnik J.
        • Kasymjanova G.
        • et al.
        Cytology cell blocks are suitable for immunohistochemical testing for PD-L1 in lung cancer.
        Ann Oncol. 2018; 29: 1417-1422
        • Noll B.
        • Wang W.L.
        • Gong Y.
        • et al.
        Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations.
        Cancer Cytopathol. 2018; 126: 342-352
        • Skov B.G.
        • Skov T.
        Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1IHC 28-8pharmDx and PD-L1IHC22C3pharmDx.
        ApplImmunohistochemMolMorphol. 2017; 25: 453-459
        • Emancipator K.
        • Huang L.
        • Aurora-Garg D.
        • et al.
        Comparing programmed death ligand 1 scores for predicting pembrolizumab efficacy in head and neck cancer.
        Mod Pathol. 2021; 34: 532-541