Advertisement

Breath-Based Diagnosis of Infectious Diseases

A Review of the Current Landscape
  • Author Footnotes
    1 These authors contributed equally to this work.
    Chiranjit Ghosh
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Armando Leon
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
    Search for articles by this author
  • Seena Koshy
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
    Search for articles by this author
  • Obadah Aloum
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
    Search for articles by this author
  • Yazan Al-Jabawi
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
    Search for articles by this author
  • Nour Ismail
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
    Search for articles by this author
  • Zoe Freeman Weiss
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA

    Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
    Search for articles by this author
  • Sophia Koo
    Correspondence
    Corresponding author. Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115.
    Affiliations
    Division of Infectious Diseases, Brigham and Women’s Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA

    Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA

    Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amann A.
        • Costello B.L.
        • Miekisch W.
        • et al.
        The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.
        J Breath Res. 2014; 8: 034001
        • Pauling L.
        • Robinson A.B.
        • Teranishi R.
        • et al.
        Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography.
        Proc Natl Acad Sci U S A. 1971; 68: 2374-2376
        • Teranishi R.
        • Mon T.R.
        • Robinson A.B.
        • et al.
        Gas chromatography of volatiles from breath and urine.
        Anal Chem. 1972; 44: 18-20
        • Frank H.
        • Hintze T.
        • Bimboes D.
        • et al.
        Monitoring lipid peroxidation by breath analysis: endogenous hydrocarbons and their metabolic elimination.
        Toxicol Appl Pharmacol. 1980; 56: 337-344
        • Das S.
        • Pal M.
        Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review.
        J Electrochem Soc. 2020; 167: 037562
        • Xu M.
        • Tang Z.
        • Duan Y.
        • et al.
        GC-based techniques for breath analysis: current status, challenges, and prospects.
        Crit Rev Anal Chem. 2016; 46: 291-304
        • Hunt J.
        Exhaled breath condensate: an overview.
        Immunol Allergy Clin North Am. 2007; 27: 587-596
        • Kubáň P.
        • Foret F.
        Exhaled breath condensate: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review.
        Anal Chim Acta. 2013; 805: 1-18
        • Mendis S.
        • Sobotka P.A.
        • Euler D.E.
        Pentane and isoprene in expired air from humans: gas-chromatographic analysis of single breath.
        Clin Chem. 1994; 40: 1485-1488
        • Frank Kneepkens C.M.
        • Lepage G.
        • Roy C.C.
        The potential of the hydrocarbon breath test as a measure of lipid peroxidation.
        Free Radic Biol Med. 1994; 17: 127-160
        • Poli D.
        • Goldoni M.
        • Corradi M.
        • et al.
        Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME–GC/MS.
        J Chromatogr B. 2010; 878: 2643-2651
        • Ulanowska A.
        • Kowalkowski T.
        • Hrynkiewicz K.
        • et al.
        Determination of volatile organic compounds in human breath for Helicobacter pylori detection by SPME-GC/MS.
        Biomed Chromatogr. 2011; 25: 391-397
        • Martin A.N.
        • Farquar G.R.
        • Jones A.D.
        • et al.
        Human breath analysis: methods for sample collection and reduction of localized background effects.
        Anal Bioanal Chem. 2010; 396: 739-750
        • Beale D.J.
        • Pinu F.R.
        • Kouremenos K.A.
        • et al.
        Review of recent developments in GC–MS approaches to metabolomics-based research.
        Metabolomics. 2018; 14: 152
        • Baldwin S.
        • Bristow T.
        • Ray A.
        • et al.
        Applicability of gas chromatography/quadrupole-Orbitrap mass spectrometry in support of pharmaceutical research and development.
        Rapid Commun Mass Spectrom. 2016; 30: 873-880
        • Beckner Whitener M.E.
        • Stanstrup J.
        • Panzeri V.
        • et al.
        Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts.
        Metabolomics. 2016; 12: 53
        • Williamson L.N.
        • Bartlett M.G.
        Quantitative gas chromatography/time-of-flight mass spectrometry: a review.
        Biomed Chromatogr. 2007; 21: 664-669
        • Vreuls R.J.J.
        • Dallüge J.
        • Brinkman U.A.T.
        Gas chromatography–time-of-flight mass spectrometry for sensitive determination of organic microcontaminants.
        J Microcolumn Sep. 1999; 11: 663-675
        • Ryan D.
        • Watkins P.
        • Smith J.
        • et al.
        Analysis of methoxypyrazines in wine using headspace solid phase microextraction with isotope dilution and comprehensive two-dimensional gas chromatography.
        J Sep Sci. 2005; 28: 1075-1082
        • Schwoebel H.
        • Schubert R.
        • Sklorz M.
        • et al.
        Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data.
        Anal Bioanal Chem. 2011; 401: 2079-2091
        • Herbig J.
        • Müller M.
        • Schallhart S.
        • et al.
        On-line breath analysis with PTR-TOF.
        J Breath Res. 2009; 3: 027004
        • Španěl P.
        • Smith D.
        Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath.
        Med Biol Eng Comput. 1996; 34: 409-419
        • Kharitonov S.A.
        • Yates D.
        • Barnes P.J.
        Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections.
        Eur Respir J. 1995; 8: 295-297
        • Smith D.
        • Španěl P.
        Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath.
        Int Rev Phys Chem. 1996; 15: 231-271
        • Schwarz K.
        • Pizzini A.
        • Arendacká B.
        • et al.
        Breath acetone—aspects of normal physiology related to age and gender as determined in a PTR-MS study.
        J Breath Res. 2009; 3: 027003
        • Ewing R.G.
        Ion mobility spectrometry, 2nd Edition by Gary A. Eiceman (New Mexico State University, Las cruces, NM) and Zeev Karpas (Nuclear Research Center, Beer-Sheva, Israel). CRC press (an imprint of Taylor and Francis group): Boca Raton, FL. 2005. XVI + 350.
        J Am Chem Soc. 2006; 128: 5585-5586
        • Reynolds J.C.
        • Blackburn G.J.
        • Guallar-Hoyas C.
        • et al.
        Detection of volatile organic compounds in breath using thermal desorption electrospray ionization-ion mobility-mass spectrometry.
        Anal Chem. 2010; 82: 2139-2144
        • Baumbach J.I.
        • Eiceman G.A.
        Ion mobility spectrometry: arriving on site and moving beyond a low profile.
        Appl Spectrosc. 1999; 53: 338A-355A
        • Borsdorf H.
        • Eiceman G.A.
        Ion mobility spectrometry: principles and applications.
        Appl Spectrosc Rev. 2006; 41: 323-375
        • Farraia M.V.
        • Cavaleiro Rufo J.
        • Paciência I.
        • et al.
        The electronic nose technology in clinical diagnosis: a systematic review.
        Porto Biomed J. 2019; 4: e42
        • Gardner J.W.
        • Bartlett P.N.
        A brief history of electronic noses.
        Sens Actuators B Chem. 1994; 18: 210-211
        • Van Berkel J.J.B.N.
        • Dallinga J.W.
        • Möller G.M.
        • et al.
        A profile of volatile organic compounds in breath discriminates COPD patients from controls.
        Respir Med. 2010; 104: 557-563
        • Dragonieri S.
        • Annema J.T.
        • Schot R.
        • et al.
        An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD.
        Lung Cancer. 2009; 64: 166-170
        • Bos L.D.
        • Sterk P.J.
        • Fowler S.J.
        Breathomics in the setting of asthma and chronic obstructive pulmonary disease.
        J Allergy Clin Immunol. 2016; 138: 970-976
        • Boots A.W.
        • van Berkel J.J.B.N.
        • Dallinga J.W.
        • et al.
        The versatile use of exhaled volatile organic compounds in human health and disease.
        J Breath Res. 2012; 6: 027108
        • Broza Y.Y.
        • Haick H.
        Nanomaterial-based sensors for detection of disease by volatile organic compounds.
        Nanomedicine. 2013; 8: 785-806
        • Konvalina G.
        • Haick H.
        Sensors for breath testing: from nanomaterials to comprehensive disease detection.
        Acc Chem Res. 2014; 47: 66-76
        • Dovgolevsky E.
        • Tisch U.
        • Haick H.
        Chemically sensitive resistors based on monolayer-capped cubic nanoparticles: towards configurable nanoporous sensors.
        Small. 2009; 5: 1158-1161
        • Paska Y.
        • Stelzner T.
        • Christiansen S.
        • et al.
        Enhanced sensing of Nonpolar volatile organic compounds by silicon nanowire field effect transistors.
        ACS Nano. 2011; 5: 5620-5626
        • Long Z.
        • Kou L.
        • Sepaniak M.J.
        • et al.
        Recent advances in gas phase microcantilever-based sensing.
        Rev Anal Chem. 2013; 32
        • Kadri S.S.
        Key takeaways from the U.S. CDC’s 2019 antibiotic resistance threats report for frontline providers.
        Crit Care Med. 2020; 48: 939-945
        • Walker H.J.
        • Burrell M.M.
        Could breath analysis by MS could be a solution to rapid, non-invasive testing for COVID-19?.
        Bioanalysis. 2020; 12: 1213-1217
        • Grassin-Delyle S.
        • Roquencourt C.
        • Moine P.
        • et al.
        Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study.
        EBioMedicine. 2021; 63: 103154
        • Ruszkiewicz D.M.
        • Sanders D.
        • O’Brien R.
        • et al.
        Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry - a feasibility study.
        EClinicalMedicine. 2020; 29: 100609
        • Berna A.Z.
        • Akaho E.H.
        • Harris R.M.
        • et al.
        Breath biomarkers of pediatric SARS-CoV-2 infection: a pilot study.
        medRxiv. 2020; 2020
        • Jendrny P.
        • Schulz C.
        • Twele F.
        • et al.
        Scent dog identification of samples from COVID-19 patients – a pilot study.
        BMC Infect Dis. 2020; 20: 536
        • Ryan D.J.
        • Toomey S.
        • Madden S.F.
        • et al.
        Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19).
        Thorax. 2021; 76: 86-88
        • Wintjens A.G.W.E.
        • Hintzen K.F.H.
        • Engelen S.M.E.
        • et al.
        Applying the electronic nose for pre-operative SARS-CoV-2 screening.
        Surg Endosc. 2020; : 1-8
        • Traxler S.
        • Bischoff A.-C.
        • Saß R.
        • et al.
        VOC breath profile in spontaneously breathing awake swine during Influenza A infection.
        Sci Rep. 2018; 8: 14857
        • Traxler S.
        • Barkowsky G.
        • Saß R.
        • et al.
        Volatile scents of influenza A and S. pyogenes (co-)infected cells.
        Sci Rep. 2019; 9: 18894
        • Purcaro G.
        • Rees C.A.
        • Wieland-Alter W.F.
        • et al.
        Volatile fingerprinting of human respiratory viruses from cell culture.
        J Breath Res. 2018; 12: 026015
        • Phillips M.
        • Cataneo R.N.
        • Chaturvedi A.
        • et al.
        Effect of influenza vaccination on oxidative stress products in breath.
        J Breath Res. 2010; 4: 026001
        • Gralton J.
        • Tovey E.R.
        • McLaws M.-L.
        • et al.
        Respiratory virus RNA is detectable in airborne and droplet particles.
        J Med Virol. 2013; 85: 2151-2159
        • Schaber C.L.
        • Katta N.
        • Bollinger L.B.
        • et al.
        Breathprinting reveals malaria-associated biomarkers and mosquito attractants.
        J Infect Dis. 2018; 217: 1553-1560
        • Berna A.Z.
        • McCarthy J.S.
        • Wang R.X.
        • et al.
        Analysis of breath specimens for biomarkers of Plasmodium falciparum infection.
        J Infect Dis. 2015; 212: 1120-1128
        • Berna A.Z.
        • McCarthy J.S.
        • Wang X.R.
        • et al.
        Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers.
        J Breath Res. 2018; 12: 46014
        • Welearegay T.G.
        • Diouani M.F.
        • Österlund L.
        • et al.
        Ligand-capped ultrapure metal nanoparticle sensors for the detection of cutaneous leishmaniasis disease in exhaled breath.
        ACS Sensors. 2018; 3: 2532-2540
        • Welearegay T.G.
        • Diouani M.F.
        • Österlund L.
        • et al.
        Diagnosis of human echinococcosis via exhaled breath analysis: a promise for rapid diagnosis of infectious diseases caused by Helminths.
        J Infect Dis. 2019; 219: 101-109
        • Rosón B.
        • Carratalà J.
        • Verdaguer R.
        • et al.
        Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization.
        Clin Infect Dis. 2000; 31: 869-874
        • Ewig S.
        • Schlochtermeier M.
        • Göke N.
        • et al.
        Applying sputum as a diagnostic tool in pneumonia: limited yield, minimal impact on treatment decisions.
        Chest. 2002; 121: 1486-1492
        • Gastli N.
        • Loubinoux J.
        • Daragon M.
        • et al.
        Multicentric evaluation of BioFire FilmArray Pneumonia Panel for rapid bacteriological documentation of pneumonia.
        Clin Microbiol Infect. 2020;
        • Garg N.
        • Wang M.
        • Hyde E.
        • et al.
        Three-Dimensional microbiome and metabolome cartography of a diseased human lung.
        Cell Host Microbe. 2017; 22: 705-716.e4
        • Saktiawati A.M.I.
        • Putera D.D.
        • Setyawan A.
        • et al.
        Diagnosis of tuberculosis through breath test: a systematic review.
        EBioMedicine. 2019; 46: 202-214
        • Kolk A.H.J.
        • van Berkel J.J.B.N.
        • Claassens M.M.
        • et al.
        Breath analysis as a potential diagnostic tool for tuberculosis.
        Int J Tuberc Lung Dis. 2012; 16: 777-782
        • Phillips M.
        • Basa-Dalay V.
        • Bothamley G.
        • et al.
        Breath biomarkers of active pulmonary tuberculosis.
        Tuberculosis. 2010; 90: 145-151
        • Mellors T.R.
        • Nasir M.
        • Franchina F.A.
        • et al.
        Identification of Mycobacterium tuberculosis using volatile biomarkers in culture and exhaled breath.
        J Breath Res. 2018; 13: 16004
        • Bobak C.A.
        • Kang L.
        • Workman L.
        • et al.
        Breath can discriminate tuberculosis from other lower respiratory illness in children.
        Sci Rep. 2021; 11: 2704
        • McNerney R.
        • Wondafrash B.A.
        • Amena K.
        • et al.
        Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough.
        BMC Infect Dis. 2010; 10: 161
        • Purcaro G.
        • Nasir M.
        • Franchina F.A.
        • et al.
        Breath metabolome of mice infected with Pseudomonas aeruginosa.
        Metabolomics. 2019; 15: 10
        • Suarez-Cuartin G.
        • Giner J.
        • Merino J.L.
        • et al.
        Identification of Pseudomonas aeruginosa and airway bacterial colonization by an electronic nose in bronchiectasis.
        Respir Med. 2018; 136: 111-117
        • Robroeks C.M.
        • van Berkel J.J.B.N.
        • Dallinga J.W.
        • et al.
        Metabolomics of volatile organic compounds in cystic fibrosis patients and controls.
        Pediatr Res. 2010; 68: 75-80
        • Enderby B.
        • Smith D.
        • Carroll W.
        • et al.
        Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis.
        Pediatr Pulmonol. 2009; 44: 142-147
        • Smith D.
        • Spaněl P.
        • Gilchrist F.J.
        • et al.
        Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection.
        J Breath Res. 2013; 7: 44001
        • Rabis T.
        • Sommerwerck U.
        • Anhenn O.
        • et al.
        Detection of infectious agents in the airways by ion mobility spectrometry of exhaled breath.
        Int J Ion Mobil Spectrom. 2011; 14: 187-195
        • Neerincx A.H.
        • Geurts B.P.
        • van Loon J.
        • et al.
        Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles.
        J Breath Res. 2016; 10: 46014
        • Zhu J.
        • Jiménez-Díaz J.
        • Bean H.D.
        • et al.
        Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: from initial infection to clearance.
        J Breath Res. 2013; 7: 37106
        • van Oort P.M.
        • Brinkman P.
        • Slingers G.
        • et al.
        Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: a proof-of-concept study.
        Am J Physiol Cell Mol Physiol. 2019; 316: L751-L756
        • Gisbert J.P.
        • Pajares J.M.
        Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection – a critical review.
        Aliment Pharmacol Ther. 2004; 20: 1001-1017
        • Maity A.
        • Banik G.D.
        • Ghosh C.
        • et al.
        Residual gas analyzer mass spectrometry for human breath analysis: a new tool for the non-invasive diagnosis of Helicobacter pylori infection.
        J Breath Res. 2014; 8: 016005
        • Gao J.
        • Zou Y.
        • Wang Y.
        • et al.
        Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients.
        J Breath Res. 2016; 10: 27102
        • Zhu J.
        • Bean H.D.
        • Wargo M.J.
        • et al.
        Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.
        J Breath Res. 2013; 7: 16003
        • Hockstein N.G.
        • Thaler E.R.
        • Torigian D.
        • et al.
        Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings.
        Laryngoscope. 2004; 114: 1701-1705
        • Hockstein N.G.
        • Thaler E.R.
        • Lin Y.
        • et al.
        Correlation of pneumonia score with electronic nose signature: a prospective study.
        Ann Otol Rhinol Laryngol. 2005; 114: 504-508
        • Filipiak W.
        • Beer R.
        • Sponring A.
        • et al.
        Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: a prospective pilot study.
        J Breath Res. 2015; 9: 016004
        • Fowler S.J.
        • Basanta-Sanchez M.
        • Xu Y.
        • et al.
        Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study.
        Thorax. 2015; 70: 320-325
        • van Oort P.
        • de Bruin S.
        • Weda H.
        • et al.
        Exhaled breath metabolomics for the diagnosis of pneumonia in Intubated and mechanically-ventilated intensive care unit (ICU)-Patients.
        Int J Mol Sci. 2017; 18: 449
        • Schnabel R.
        • Fijten R.
        • Smolinska A.
        • et al.
        Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia.
        Sci Rep. 2015; 5: 17179
        • Andrews B.T.
        • Das P.
        • Denzer W.
        • et al.
        Breath testing for intra-abdominal infection: appendicitis, a preliminary study.
        J Breath Res. 2020; 15: 16002
        • Acharige M.J.T.
        • Koshy S.
        • Ismail N.
        • et al.
        Breath-based diagnosis of fungal infections.
        J Breath Res. 2018; 12: 027108
        • Sethi S.
        • Nanda R.
        • Chakraborty T.
        Clinical application of volatile organic compound analysis for detecting infectious diseases.
        Clin Microbiol Rev. 2013; 26: 462-475
        • Chambers S.T.
        • Syhre M.
        • Murdoch D.R.
        • et al.
        Detection of 2-Pentylfuran in the breath of patients with Aspergillus fumigatus.
        Med Mycol. 2009; 47: 468-476
        • Koo S.
        • Thomas H.R.
        • Daniels S.D.
        • et al.
        A breath fungal secondary metabolite signature to diagnose invasive aspergillosis.
        Clin Infect Dis. 2014; 59: 1733-1740
        • de Heer K.
        • van der Schee M.P.
        • Zwinderman K.
        • et al.
        Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study.
        J Clin Microbiol. 2013; 51: 1490-1495
        • de Heer K.
        • Kok M.G.M.
        • Fens N.
        • et al.
        Detection of airway colonization by Aspergillus fumigatus by use of electronic nose technology in patients with cystic fibrosis.
        J Clin Microbiol. 2016; 54: 569-575
        • Hertel M.
        • Schuette E.
        • Kastner I.
        • et al.
        Volatile organic compounds in the breath of oral candidiasis patients: a pilot study.
        Clin Oral Investig. 2018; 22: 721-731