Review Article| Volume 41, ISSUE 1, P121-132, March 2021

Cellular Therapy in Pediatric Hematologic Malignancies

  • Susan Kuldanek
    Hemophilia and Thrombosis Center, Center for Cancer and Blood Disorders, Children’s Hospital Colorado, University of Colorado-Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA
    Search for articles by this author
  • Bryce Pasko
    Department of Pathology and Laboratory Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA

    Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
    Search for articles by this author
  • Melkon DomBourian
    Main Core Laboratory and Point of Care Testing, Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, 13123 East 16th Avenue, B120, Aurora, CO 80045, USA

    Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
    Search for articles by this author
  • Kyle Annen
    Corresponding author. Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, 13123 East 16th Avenue, B120, Aurora, CO 80045.
    Department of Pathology and Laboratory Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA

    Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
    Search for articles by this author


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Thomas E.D.
        • Lochte Jr., H.L.
        • Cannon J.H.
        • et al.
        Supralethal whole body irradiation and isologous marrow transplantation in man.
        J Clin Invest. 1959; 38: 1709-1716
        • Eapen M.
        • Horowitz M.M.
        • Klein J.P.
        • et al.
        Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the histocompatibility and alternate stem cell source working Committee of the international bone marrow transplant Registry.
        J Clin Oncol. 2004; 22: 4872-4880
        • Cairo M.S.
        • Rocha V.
        • Gluckman E.
        • et al.
        Alternative allogeneic donor sources for transplantation for childhood diseases: unrelated cord blood and haploidentical family donors.
        Biol Blood Marrow Transplant. 2008; 14: 44-53
        • Gonzalez-Vicent M.
        • Diaz Perez M.A.
        Allogeneic hematopoietic stem-cell transplantation from haploidentical donors using 'ex-vivo' T-cell depletion in pediatric patients with hematological malignancies: state of the art review.
        Curr Opin Oncol. 2018; 30: 396-401
        • Ruggeri L.
        • Capanni M.
        • Urbani E.
        • et al.
        Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.
        Science. 2002; 295: 2097-2100
        • Cohen S.
        • Roy J.
        • Lachance S.
        • et al.
        Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study.
        Lancet Haematol. 2020; 7: e134-e145
        • Cutler C.
        • Antin J.H.
        Peripheral blood stem cells for allogeneic transplantation: a review.
        Stem Cells. 2001; 19: 108-117
        • Rocha V.
        • Wagner Jr., J.E.
        • Sobocinski K.A.
        • et al.
        Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and international bone marrow transplant Registry working Committee on alternative donor and stem cell sources.
        N Engl J Med. 2000; 342: 1846-1854
        • Gluckman E.
        • Rocha V.
        • Boyer-Chammard A.
        • et al.
        Eurocord transplant group and the European blood and marrow transplantation GroupOutcome of cord-blood transplantation from related and unrelated donors.
        N Engl J Med. 1997; 337: 373-381
        • Deeg H.J.
        • Spaulding E.
        • Shulman H.M.
        Iron overload, hematopoietic cell transplantation, and graft-versus-host disease.
        Leuk Lymphoma. 2009; 50: 1566-1572
        • Carreras E.
        • Diaz-Ricart M.
        The role of the endothelium in the short-term complications of hematopoietic SCT.
        Transplant. 2011; 46: 1495-1502
        • Mohty M.
        • Malard F.
        • Abecassis M.
        • et al.
        Sinusoidal obstruction syndrome/veno-occlusive disease: current situation and perspectives-a position statement from the European Society for Blood and Marrow Transplantation (EBMT).
        Bone Marrow Transplant. 2015; 50: 781-789
        • Obut F.
        • Kasinath V.
        • Abdi R.
        Post-bone marrow transplant thrombotic microangiopathy.
        Bone Marrow Transplant. 2016; 51: 891-897
        • Schrappe M.
        • Hunger S.P.
        • Pui C.H.
        • et al.
        Outcomes after induction failure in childhood acute lymphoblastic leukemia.
        N Engl J Med. 2012; 366: 1371-1381
        • Hucks G.
        • Rheingold S.R.
        The journey to CAR T cell therapy: the pediatric and young adult experience with relapsed or refractory B-ALL.
        Blood Cancer J. 2019; 9: 10
        • Reddy O.L.
        • Stroncek D.F.
        • Panch S.R.
        Improving CAR T cell therapy by optimizing critical quality attributes.
        Semin Hematol. 2020; 57: 33-38
        • Marple A.H.
        • Bonifant C.
        • Shah N.N.
        Improving CAR T-cells: the next generation.
        Semin Hematol. 2020;
        • Szenes V.
        • Curran K.J.
        Utilization of CAR T cell therapy in pediatric patients.
        Semin Oncol Nurs. 2019; 35: 150929
        • Kansagra A.J.
        • Frey N.V.
        • Bar M.
        • et al.
        Clinical utilization of Chimeric antigen receptor T cells in B cell acute lymphoblastic leukemia: an expert Opinion from the European Society for blood and marrow transplantation and the American Society for blood and marrow transplantation.
        Biol Blood Marrow Transplant. 2019; 25: e76-e85
        • Davila M.L.
        • Sadelain M.
        Biology and clinical application of CAR T cells for B cell malignancies.
        Int J Hematol. 2016; 104: 6-17
        • Lee D.W.
        • Santomasso B.D.
        • Locke F.L.
        • et al.
        ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells.
        Biol Blood Marrow Transplant. 2019; 25: 625-638
        • Maude S.L.
        • Barrett D.
        • Teachey D.T.
        • et al.
        Managing cytokine release syndrome associated with novel T cell-engaging therapies.
        Cancer J. 2014; 20: 119-122
        • Nishimoto N.
        • Terao K.
        • Mima T.
        • et al.
        Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease.
        Blood. 2008; 112: 3959-3964
        • Maude S.L.
        • Laetsch T.W.
        • Buechner J.
        • et al.
        Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.
        N Engl J Med. 2018; 378: 439-448
        • Schuster S.J.
        • Bishop M.R.
        • Tam C.S.
        • et al.
        Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma.
        N Engl J Med. 2019; 380: 45-56
        • Locke F.L.
        • Ghobadi A.
        • Jacobson C.A.
        • et al.
        Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial.
        Lancet Oncol. 2019; 20: 31-42
        • Subklewe M.
        • von Bergwelt-Baildon M.
        • Humpe A.
        Chimeric antigen receptor T cells: a race to revolutionize cancer therapy.
        Transfus Med Hemother. 2019; 46: 15-24
        • Miyara M.
        • Gorochov G.
        • Ehrenstein M.
        • et al.
        Human FoxP3+ regulatory T cells in systemic autoimmune diseases.
        Autoimmun Rev. 2011; 10: 744-755
        • Sakaguchi S.
        • Sakaguchi N.
        • Asano M.
        • et al.
        Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.
        J Immunol. 1995; 155: 1151-1164
        • Gliwiński M.
        • Iwaszkiewicz-Grześ D.
        • Trzonkowski P.
        Cell-Based Therapies with T regulatory cells.
        BioDrugs. 2017; 31: 335-347
        • Niedźwiecki M.
        • Budziło O.
        • Adamkiewicz-Drożyńska E.
        • et al.
        CD4+CD25highCD127low/-FoxP3+ regulatory T-cell population in acute leukemias: a review of the literature.
        J Immunol Res. 2019; 2019: 2816498
        • Trzonkowski P.
        • Bieniaszewska M.
        • Juścińska J.
        • et al.
        First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells.
        Clin Immunol. 2009; 133: 22-26
        • Brunstein C.G.
        • Miller J.S.
        • Cao Q.
        • et al.
        Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics.
        Blood. 2011; 117: 1061-1070
        • Brunstein C.G.
        • Miller J.S.
        • McKenna D.H.
        • et al.
        Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect.
        Blood. 2016; 127: 1044-1051
        • Niedźwiecki M.
        • Budziło O.
        • Zieliński M.
        • et al.
        CD4+CD25highCD127low/-FoxP3+ regulatory T cell Subpopulations in the bone marrow and peripheral blood of children with ALL: brief Report.
        J Immunol Res. 2018; 2018: 1292404
        • Trzonkowski P.
        • Szmit E.
        • Myśliwska J.
        • et al.
        CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction.
        Clin Immunol. 2004; 112: 258-267
        • Li Q.
        • Egilmez N.K.
        Ontogeny of tumor-associated CD4+CD25+Foxp3+ T-regulatory cells.
        Immunol Invest. 2016; 45: 729-745
        • Bhattacharya K.
        • Chandra S.
        • Mandal C.
        Critical stoichiometric ratio of CD4(+) CD25(+) FoxP3(+) regulatory T cells and CD4(+) CD25(-) responder T cells influence immunosuppression in patients with B-cell acute lymphoblastic leukaemia.
        Immunology. 2014; 142: 124-139
        • Wu Z.L.
        • Hu G.Y.
        • Chen F.X.
        • et al.
        Change of CD4(+) CD25(+) regulatory T cells and NK Cells in peripheral blood of children with acute leukemia and its possible significance in tumor immunity.
        Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010; 18: 709-713
        • Shimasaki N.
        • Jain A.
        • Campana D.
        NK cells for cancer immunotherapy.
        Nat Rev Drug Discov. 2020; 19: 200-218
        • Gwalani L.A.
        • Orange J.S.
        Single degranulations in NK cells can mediate target cell killing.
        J Immunol. 2018; 200: 3231-3243
        • Adams N.M.
        • Geary C.D.
        • Santosa E.K.
        • et al.
        Cytomegalovirus infection drives avidity selection of natural killer cells.
        Immunity. 2019; 50: 1381-1390.e5
        • Fujisaki H.
        • Kakuda H.
        • Imai C.
        • et al.
        Replicative potential of human natural killer cells.
        Br J Haematol. 2009; 145: 606-613
        • Mehta R.S.
        • Randolph B.
        • Daher M.
        • et al.
        NK cell therapy for hematologic malignancies.
        Int J Hematol. 2018; 107: 262-270
        • Shilling H.G.
        • Young N.
        • Guethlein L.A.
        • et al.
        J Immunol. 2002; 169: 239-247
        • Pérez-Martínez A.
        • de Prada Vicente I.
        • Fernández L.
        • et al.
        Killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors.
        Exp Hematol. 2012; 40: 882-891
        • Rouce R.H.
        • Sekine T.
        • Weber G.
        • et al.
        Natural killer cells in pediatric acute lymphoblastic leukemia patients at diagnosis demonstrate an inhibitory phenotype and reduced cytolytic capacity.
        Blood. 2013; 122: 1397
        • Simonetta F.
        • Alvarez M.
        • Negrin R.S.
        Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation.
        Front Immunol. 2017; 8: 465
        • Bachanova V.
        • Cooley S.
        • Defor T.E.
        • et al.
        Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein.
        Blood. 2014; 123: 3855-3863
        • Miller J.S.
        • Soignier Y.
        • Panoskaltsis-Mortari A.
        • et al.
        Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.
        Blood. 2005; 105: 3051-3057
        • Ciurea S.O.
        • Schafer J.R.
        • Bassett R.
        • et al.
        Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation.
        Blood. 2017; 130: 1857-1868
        • Boyiadzis M.
        • Agha M.
        • Redner R.L.
        • et al.
        1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia.
        Cytotherapy. 2017; 19: 1225-1232
        • Felices M.
        • Lenvik T.R.
        • Davis Z.B.
        • et al.
        Generation of BiKEs and TriKEs to Improve NK cell-mediated targeting of tumor cells.
        Methods Mol Biol. 2016; 1441: 333-346
        • Kaynar L.
        • Demir K.
        • Turak E.E.
        • et al.
        TcRαβ-depleted haploidentical transplantation results in adult acute leukemia patients.
        Hematology. 2017; 22: 136-144
        • Reisner Y.
        • Kapoor N.
        • Kirkpatrick D.
        • et al.
        Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells.
        Lancet. 1981; 2: 327-331
        • Reisner Y.
        • Kapoor N.
        • Kirkpatrick D.
        • et al.
        Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells.
        Blood. 1983; 61: 341-348
        • Aversa F.
        • Tabilio A.
        • Terenzi A.
        • et al.
        Successful engraftment of T-cell-depleted haploidentical "three-loci" incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum.
        Blood. 1994; 84: 3948-3955
        • Aversa F.
        • Tabilio A.
        • Velardi A.
        • et al.
        Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype.
        N Engl J Med. 1998; 339: 1186-1193
        • Lang P.
        • Feuchtinger T.
        • Teltschik H.M.
        • et al.
        Improved immune recovery after transplantation of TCRαβ/CD19-depleted allografts from haploidentical donors in pediatric patients.
        Bone Marrow Transplant. 2015; 50: S6-S10
        • Chaleff S.
        • Otto M.
        • Barfield R.C.
        • et al.
        A large-scale method for the selective depletion of alphabeta T lymphocytes from PBSC for allogeneic transplantation.
        Cytotherapy. 2007; 9: 746-754
        • Perko R.
        • Kang G.
        • Sunkara A.
        • et al.
        Gamma delta T cell reconstitution is associated with fewer infections and improved event-free survival after hematopoietic stem cell transplantation for pediatric leukemia.
        Biol Blood Marrow Transplant. 2015; 21: 130-136
        • Shelikhova L.
        • Ilushina M.
        • Shekhovtsova Z.
        • et al.
        αβ T cell-depleted haploidentical hematopoietic stem cell transplantation without antithymocyte globulin in children with chemorefractory acute myelogenous leukemia.
        Biol Blood Marrow Transplant. 2019; 25: e179-e182
        • Ismail A.S.
        • Behrendt C.L.
        • Hooper L.V.
        • et al.
        Reciprocal interactions between commensal bacteria and γδ intraepithelial lymphocytes during mucosal injury.
        J Immunol. 2009; 182: 3047
        • Center for Biologics Evaluation and Research
        Cellular and gene therapy guidances. U.S. Food and Drug Administration.
        (Available at:) (Accessed August 16, 2020)
        • Warkentin P.I.
        Foundation for the accreditation of cellular therapy. Voluntary accreditation of cellular therapies: Foundation for the Accreditation of Cellular Therapy (FACT).
        Cytotherapy. 2003; 5: 299-305
      1. Foundation for the accreditation of cellular therapy. FACT.
        (Available at:) (Accessed August 16, 2020)
        • Foundation for the Accreditation of Cellular Therapy and Joint Accreditation Committee
        International standards for hematopoietic cellular therapy product collection, processing, and administration (Seventh edition version 7.0).
        (Available at:) (Accessed August 10, 2020)
        • Foundation for the Accreditation of Cellular Therapy and Joint Accreditation Committee
        Common standards for cellular therapies (Second edition).
        (Available at:) (Accessed August 10, 2020)
        • Foundation for the Accreditation of Cellular Therapy and Joint Accreditation
        Standards for immune effector cells (first edition version 1.1).
        (Available at:) (Accessed August 10, 2020)