Advertisement
Review Article| Volume 41, ISSUE 1, P101-119, March 2021

Transfusion and Cellular Therapy in Pediatric Sickle Cell Disease

Published:December 22, 2020DOI:https://doi.org/10.1016/j.cll.2020.10.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vichinsky E.P.
        • Earles A.
        • Johnson R.A.
        • et al.
        Alloimmunization in sickle cell anemia and transfusion of racially unmatched blood.
        N Engl J Med. 1990; 322: 1617-1621
        • Chou S.T.
        • Alsawas M.
        • Fasano R.M.
        • et al.
        American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support.
        Blood Adv. 2020; 4: 327-355
        • Yawn B.P.
        • Buchanan G.R.
        • Afenyi-Annan A.N.
        • et al.
        Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members.
        JAMA. 2014; 312: 1033-1048
        • Davis B.A.
        • Allard S.
        • Qureshi A.
        • et al.
        Guidelines on red cell transfusion in sickle cell disease Part II: indications for transfusion.
        Br J Haematol. 2017; 176: 192-209
        • Stussi G.
        • Buser A.
        • Holbro A.
        Red blood cells: exchange, transfuse, or deplete.
        Transfus Med Hemother. 2019; 46: 407-416
        • Ware H.M.
        • Kwiatkowski J.L.
        Evaluation and treatment of transfusional iron overload in children.
        Pediatr Clin North Am. 2013; 60: 1393-1406
        • Biller E.
        • Zhao Y.
        • Berg M.
        • et al.
        Red blood cell exchange in patients with sickle cell disease-indications and management: a review and consensus report by the therapeutic apheresis subsection of the AABB.
        Transfusion. 2018; 58: 1965-1972
        • Padmanabhan A.
        • Connelly-Smith L.
        • Aqui N.
        • et al.
        Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the Writing Committee of the American Society for apheresis: the Eighth special Issue.
        J Clin Apher. 2019; 34: 171-354
        • Venkateswaran L.
        • Teruya J.
        • Bustillos C.
        • et al.
        Red cell exchange does not appear to increase the rate of allo- and auto-immunization in chronically transfused children with sickle cell disease.
        Pediatr Blood Cancer. 2011; 57: 294-296
        • Kassim A.A.
        • Galadanci N.A.
        • Pruthi S.
        • et al.
        How I treat and manage strokes in sickle cell disease.
        Blood. 2015; 125: 3401-3410
        • Adams R.J.
        • McKie V.C.
        • Hsu L.
        • et al.
        Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography.
        N Engl J Med. 1998; 339: 5-11
        • Lee M.T.
        • Piomelli S.
        • Granger S.
        • et al.
        Stroke prevention trial in sickle cell anemia (STOP): extended follow-up and final results.
        Blood. 2006; 108: 847-852
        • Adams R.J.
        • Brambilla D.
        Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease.
        N Engl J Med. 2005; 353: 2769-2778
        • Ware R.E.
        • Davis B.R.
        • Schultz W.H.
        • et al.
        Hydroxycarbamide versus chronic transfusion for maintenance of transcranial Doppler flow velocities in children with sickle cell anaemia-TCD with Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial.
        Lancet. 2016; 387: 661-670
        • Powars D.
        • Wilson B.
        • Imbus C.
        • et al.
        The natural history of stroke in sickle cell disease.
        Am J Med. 1978; 65: 461-471
        • Scothorn D.J.
        • Price C.
        • Schwartz D.
        • et al.
        Risk of recurrent stroke in children with sickle cell disease receiving blood transfusion therapy for at least five years after initial stroke.
        J Pediatr. 2002; 140: 348-354
        • Hulbert M.L.
        • McKinstry R.C.
        • Lacey J.L.
        • et al.
        Silent cerebral infarcts occur despite regular blood transfusion therapy after first strokes in children with sickle cell disease.
        Blood. 2011; 117: 772-779
        • Ware R.E.
        • Helms R.W.
        Stroke with transfusions changing to hydroxyurea (SWiTCH).
        Blood. 2012; 119: 3925-3932
        • Kwiatkowski J.L.
        • Zimmerman R.A.
        • Pollock A.N.
        • et al.
        Silent infarcts in young children with sickle cell disease.
        Br J Haematol. 2009; 146: 300-305
        • Pegelow C.H.
        • Macklin E.A.
        • Moser F.G.
        • et al.
        Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease.
        Blood. 2002; 99: 3014-3018
        • Schatz J.
        • Brown R.T.
        • Pascual J.M.
        • et al.
        Poor school and cognitive functioning with silent cerebral infarcts and sickle cell disease.
        Neurology. 2001; 56: 1109-1111
        • Miller S.T.
        • Macklin E.A.
        • Pegelow C.H.
        • et al.
        Silent infarction as a risk factor for overt stroke in children with sickle cell anemia: a report from the Cooperative Study of Sickle Cell Disease.
        J Pediatr. 2001; 139: 385-390
        • DeBaun M.R.
        • Gordon M.
        • McKinstry R.C.
        • et al.
        Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia.
        N Engl J Med. 2014; 371: 699-710
        • Platt O.S.
        • Brambilla D.J.
        • Rosse W.F.
        • et al.
        Mortality in sickle cell disease. Life expectancy and risk factors for early death.
        N Engl J Med. 1994; 330: 1639-1644
        • Vichinsky E.P.
        • Neumayr L.D.
        • Earles A.N.
        • et al.
        Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group.
        N Engl J Med. 2000; 342: 1855-1865
        • Turner J.M.
        • Kaplan J.B.
        • Cohen H.W.
        • et al.
        Exchange versus simple transfusion for acute chest syndrome in sickle cell anemia adults.
        Transfusion. 2009; 49: 863-868
        • Saylors R.L.
        • Watkins B.
        • Saccente S.
        • et al.
        Comparison of automated red cell exchange transfusion and simple transfusion for the treatment of children with sickle cell disease acute chest syndrome.
        Pediatr Blood Cancer. 2013; 60: 1952-1956
        • Emre U.
        • Miller S.T.
        • Gutierez M.
        • et al.
        Effect of transfusion in acute chest syndrome of sickle cell disease.
        J Pediatr. 1995; 127: 901-904
        • Castro O.
        • Brambilla D.J.
        • Thorington B.
        • et al.
        The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease.
        Blood. 1994; 84: 643-649
        • Hankins J.
        • Jeng M.
        • Harris S.
        • et al.
        Chronic transfusion therapy for children with sickle cell disease and recurrent acute chest syndrome.
        J Pediatr Hematol Oncol. 2005; 27: 158-161
        • Howard J.
        • Malfroy M.
        • Llewelyn C.
        • et al.
        The Transfusion Alternatives Preoperatively in Sickle Cell Disease (TAPS) study: a randomised, controlled, multicentre clinical trial.
        Lancet. 2013; 381: 930-938
        • Vichinsky E.P.
        • Haberkern C.M.
        • Neumayr L.
        • et al.
        A comparison of conservative and aggressive transfusion regimens in the perioperative management of sickle cell disease. The Preoperative Transfusion in Sickle Cell Disease Study Group.
        N Engl J Med. 1995; 333: 206-213
        • Nickel R.S.
        • Hendrickson J.E.
        • Fasano R.M.
        • et al.
        Impact of red blood cell alloimmunization on sickle cell disease mortality: a case series.
        Transfusion. 2016; 56: 107-114
        • Telen M.J.
        • Afenyi-Annan A.
        • Garrett M.E.
        • et al.
        Alloimmunization in sickle cell disease: changing antibody specificities and association with chronic pain and decreased survival.
        Transfusion. 2015; 55: 1378-1387
        • Pirenne F.
        • Yazdanbakhsh K.
        How I safely transfuse patients with sickle-cell disease and manage delayed hemolytic transfusion reactions.
        Blood. 2018; 131: 2773-2781
        • Coleman S.
        • Westhoff C.M.
        • Friedman D.F.
        • et al.
        Alloimmunization in patients with sickle cell disease and underrecognition of accompanying delayed hemolytic transfusion reactions.
        Transfusion. 2019; 59: 2282-2291
        • Davis B.A.
        • Allard S.
        • Qureshi A.
        • et al.
        Guidelines on red cell transfusion in sickle cell disease. Part I: principles and laboratory aspects.
        Br J Haematol. 2017; 176: 179-191
        • Karafin M.S.
        • Westlake M.
        • Hauser R.G.
        • et al.
        Risk factors for red blood cell alloimmunization in the Recipient Epidemiology and Donor Evaluation Study (REDS-III) database.
        Br J Haematol. 2018; 181: 672-681
        • Chou S.T.
        • Liem R.I.
        • Thompson A.A.
        Challenges of alloimmunization in patients with haemoglobinopathies.
        Br J Haematol. 2012; 159: 394-404
        • Chou S.T.
        • Jackson T.
        • Vege S.
        • et al.
        High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors.
        Blood. 2013; 122: 1062-1071
        • Sakhalkar V.S.
        • Roberts K.
        • Hawthorne L.M.
        • et al.
        Allosensitization in patients receiving multiple blood transfusions.
        Ann N Y Acad Sci. 2005; 1054: 495-499
        • Vichinsky E.P.
        • Luban N.L.
        • Wright E.
        • et al.
        Prospective RBC phenotype matching in a stroke-prevention trial in sickle cell anemia: a multicenter transfusion trial.
        Transfusion. 2001; 41: 1086-1092
        • Fasano R.M.
        • Booth G.S.
        • Miles M.
        • et al.
        Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease.
        Br J Haematol. 2015; 168: 291-300
        • Hudson K.E.
        • Fasano R.M.
        • Karafin M.S.
        • et al.
        Mechanisms of alloimmunization in sickle cell disease.
        Curr Opin Hematol. 2019; 26: 434-441
        • Casas J.
        • Friedman D.F.
        • Jackson T.
        • et al.
        Changing practice: red blood cell typing by molecular methods for patients with sickle cell disease.
        Transfusion. 2015; 55: 1388-1393
        • Lasalle-Williams M.
        • Nuss R.
        • Le T.
        • et al.
        Extended red blood cell antigen matching for transfusions in sickle cell disease: a review of a 14-year experience from a single center (CME).
        Transfusion. 2011; 51: 1732-1739
        • Chou S.T.
        • Fasano R.M.
        Management of patients with sickle cell disease using transfusion therapy: guidelines and complications.
        Hematol Oncol Clin North Am. 2016; 30: 591-608
        • Fasano R.M.
        • Meyer E.K.
        • Branscomb J.
        • et al.
        Impact of red blood cell antigen matching on alloimmunization and transfusion complications in patients with sickle cell disease: a systematic review.
        Transfus Med Rev. 2019; 33: 12-23
        • Tournamille C.
        • Colin Y.
        • Cartron J.P.
        • et al.
        Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals.
        Nat Genet. 1995; 10: 224-228
        • Kappler-Gratias S.
        • Auxerre C.
        • Dubeaux I.
        • et al.
        Systematic RH genotyping and variant identification in French donors of African origin.
        Blood Transfus. 2014; 12: s264-s272
        • Gaspardi A.C.
        • Sippert E.A.
        • De Macedo M.D.
        • et al.
        Clinically relevant RHD-CE genotypes in patients with sickle cell disease and in African Brazilian donors.
        Blood Transfus. 2016; 14: 449-454
        • Wagner F.F.
        • Flegel W.A.
        The Rhesus site.
        Transfus Med Hemother. 2014; 41: 357-363
        • Blumenfeld O.O.
        • Patnaik S.K.
        Allelic genes of blood group antigens: a source of human mutations and cSNPs documented in the Blood Group Antigen Gene Mutation Database.
        Hum Mutat. 2004; 23: 8-16
        • Chou S.T.
        • Evans P.
        • Vege S.
        • et al.
        RH genotype matching for transfusion support in sickle cell disease.
        Blood. 2018; 132: 1198-1207
        • Marsella M.
        • Borgna-Pignatti C.
        Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease.
        Hematol Oncol Clin North Am. 2014; 28 (vi): 703-727
        • Meloni A.
        • Puliyel M.
        • Pepe A.
        • et al.
        Cardiac iron overload in sickle-cell disease.
        Am J Hematol. 2014; 89: 678-683
        • de Montalembert M.
        • Ribeil J.A.
        • Brousse V.
        • et al.
        Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome.
        PLoS One. 2017; 12: e0172147
        • Kaushik N.
        • Eckrich M.J.
        • Parra D.
        • et al.
        Chronically transfused pediatric sickle cell patients are protected from cardiac iron overload.
        Pediatr Hematol Oncol. 2012; 29: 254-260
        • Brittenham G.M.
        • Cohen A.R.
        • McLaren C.E.
        • et al.
        Hepatic iron stores and plasma ferritin concentration in patients with sickle cell anemia and thalassemia major.
        Am J Hematol. 1993; 42: 81-85
        • Anwar M.
        • Wood J.
        • Manwani D.
        • et al.
        Hepatic iron Quantification on 3 Tesla (3 T) magnetic resonance (MR): Technical challenges and Solutions.
        Radiol Res Pract. 2013; 2013: 628150
        • Angelucci E.
        • Brittenham G.M.
        • McLaren C.E.
        • et al.
        Hepatic iron concentration and total body iron stores in thalassemia major.
        N Engl J Med. 2000; 343: 327-331
        • Wood J.C.
        • Enriquez C.
        • Ghugre N.
        • et al.
        MRI R2 and R2∗ mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients.
        Blood. 2005; 106: 1460-1465
        • St Pierre T.G.
        • Clark P.R.
        • Chua-anusorn W.
        • et al.
        Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance.
        Blood. 2005; 105: 855-861
        • Johnson F.L.
        • Look A.T.
        • Gockerman J.
        • et al.
        Bone-marrow transplantation in a patient with sickle-cell anemia.
        N Engl J Med. 1984; 311: 780-783
        • Gluckman E.
        • Cappelli B.
        • Bernaudin F.
        • et al.
        Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation.
        Blood. 2017; 129: 1548-1556
        • Tanhehco Y.C.
        • Bhatia M.
        Hematopoietic stem cell transplantation and cellular therapy in sickle cell disease: where are we now?.
        Curr Opin Hematol. 2019; 26: 448-452
        • Park S.Y.
        • Matte A.
        • Jung Y.
        • et al.
        Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion.
        Blood. 2020; 135: 2071-2084
        • Walters M.C.
        • Sullivan K.M.
        • Bernaudin F.
        • et al.
        Neurologic complications after allogeneic marrow transplantation for sickle cell anemia.
        Blood. 1995; 85: 879-884
        • Cushing M.M.
        • Hendrickson J.E.
        Transfusion support for hematopoietic stem cell transplant recipients.
        in: Fung M.K. Anne E. Spitalnik S.L. Technical manual. 19th edition. AABB, Bethesda, MD2017: 683-694
        • Webb J.
        • Abraham A.
        Complex transfusion issues in pediatric hematopoietic stem cell transplantation.
        Transfus Med Rev. 2016; 30: 202-208
        • Griffith L.M.
        • McCoy Jr., J.P.
        • Bolan C.D.
        • et al.
        Persistence of recipient plasma cells and anti-donor isohaemagglutinins in patients with delayed donor erythropoiesis after major ABO incompatible non-myeloablative haematopoietic cell transplantation.
        Br J Haematol. 2005; 128: 668-675
      1. Hendrickson J, Fasano R. Transfusion support of the patient with sickle cell disease undergoing transplantation. In:2018:111-136.

        • McPherson M.E.
        • Anderson A.R.
        • Haight A.E.
        • et al.
        Transfusion management of sickle cell patients during bone marrow transplantation with matched sibling donor.
        Transfusion. 2009; 49: 1977-1986
        • Nickel R.S.
        • Flegel W.A.
        • Adams S.D.
        • et al.
        The impact of pre-existing HLA and red blood cell antibodies on transfusion support and engraftment in sickle cell disease after nonmyeloablative hematopoietic stem cell transplantation from HLA-matched sibling donors: a prospective, single-center, observational study.
        EClinicalMedicine. 2020; 24: 100432
        • Allen E.S.
        • Srivastava K.
        • Hsieh M.M.
        • et al.
        Immunohaematological complications in patients with sickle cell disease after haemopoietic progenitor cell transplantation: a prospective, single-centre, observational study.
        Lancet Haematol. 2017; 4: E553-E561
        • Nickel R.S.
        • Horan J.T.
        • Abraham A.
        • et al.
        Human leukocyte antigen (HLA) class I antibodies and transfusion support in paediatric HLA-matched haematopoietic cell transplant for sickle cell disease.
        Br J Haematol. 2020; 189: 162-170
        • Vande Vusse L.K.
        • Madtes D.K.
        • Guthrie K.A.
        • et al.
        The association between red blood cell and platelet transfusion and subsequently developing idiopathic pneumonia syndrome after hematopoietic stem cell transplantation.
        Transfusion. 2014; 54: 1071-1080
        • Solh M.
        • Morgan S.
        • McCullough J.
        • et al.
        Blood transfusions and pulmonary complications after hematopoietic cell transplantation.
        Transfusion. 2016; 56: 653-661
        • Gragert L.
        • Eapen M.
        • Williams E.
        • et al.
        HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry.
        N Engl J Med. 2014; 371: 339-348
        • Bolaños-Meade J.
        • Fuchs E.J.
        • Luznik L.
        • et al.
        HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease.
        Blood. 2012; 120: 4285-4291
        • Dallas M.H.
        • Triplett B.
        • Shook D.R.
        • et al.
        Long-term outcome and evaluation of organ function in pediatric patients undergoing haploidentical and matched related hematopoietic cell transplantation for sickle cell disease.
        Biol Blood Marrow Transplant. 2013; 19: 820-830
        • Kamani N.R.
        • Walters M.C.
        • Carter S.
        • et al.
        Unrelated donor cord blood transplantation for children with severe sickle cell disease: results of one cohort from the phase II study from the Blood and Marrow Transplant Clinical Trials Network (BMT CTN).
        Biol Blood Marrow Transplant. 2012; 18: 1265-1272
        • Ruggeri A.
        • Eapen M.
        • Scaravadou A.
        • et al.
        Umbilical cord blood transplantation for children with thalassemia and sickle cell disease.
        Biol Blood Marrow Transplant. 2011; 17: 1375-1382
        • Esrick E.B.
        • Bauer D.E.
        Genetic therapies for sickle cell disease.
        Semin Hematol. 2018; 55: 76-86
        • Tzounakas V.L.
        • Valsami S.I.
        • Kriebardis A.G.
        • et al.
        Red cell transfusion in paediatric patients with thalassaemia and sickle cell disease: current status, challenges and perspectives.
        Transfus Apher Sci. 2018; 57: 347-357
        • Ribeil J.-A.
        • Hacein-Bey-Abina S.
        • Payen E.
        • et al.
        Gene therapy in a patient with sickle cell disease.
        N Engl J Med. 2017; 376: 848-855
        • Adler B.K.
        • Salzman D.E.
        • Carabasi M.H.
        • et al.
        Fatal sickle cell crisis after granulocyte colony-stimulating factor administration.
        Blood. 2001; 97: 3313-3314
        • Fitzhugh C.D.
        • Hsieh M.M.
        • Bolan C.D.
        • et al.
        Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium?.
        Cytotherapy. 2009; 11: 464-471
        • Abboud M.
        • Laver J.
        • Blau C.A.
        Granulocytosis causing sickle-cell crisis.
        Lancet. 1998; 351: 959
        • Esrick E.B.
        • Manis J.P.
        • Daley H.
        • et al.
        Successful hematopoietic stem cell mobilization and apheresis collection using plerixafor alone in sickle cell patients.
        Blood Adv. 2018; 2: 2505-2512
        • Lagresle-Peyrou C.
        • Lefrère F.
        • Magrin E.
        • et al.
        Plerixafor enables safe, rapid, efficient mobilization of hematopoietic stem cells in sickle cell disease patients after exchange transfusion.
        Haematologica. 2018; 103: 778-786
        • Boulad F.
        • Shore T.
        • van Besien K.
        • et al.
        Safety and efficacy of plerixafor dose escalation for the mobilization of CD34(+) hematopoietic progenitor cells in patients with sickle cell disease: interim results.
        Haematologica. 2018; 103: 770-777
        • Uchida N.
        • Leonard A.
        • Stroncek D.
        • et al.
        Safe and efficient peripheral blood stem cell collection in patients with sickle cell disease using plerixafor.
        Haematologica. 2020; https://doi.org/10.3324/haematol.2019.236182
        • Allen E.S.
        • Conry-Cantilena C.
        Mobilization and collection of cells in the hematologic compartment for cellular therapies: stem cell collection with G-CSF/plerixafor, collecting lymphocytes/monocytes.
        Semin Hematol. 2019; 56: 248-256
        • Bujko K.
        • Kucia M.
        • Ratajczak J.
        • et al.
        Hematopoietic stem and progenitor cells (HSPCs).
        in: Ratajczak M.Z. Stem cells: therapeutic applications. Springer International Publishing, Cham (Switzerland)2019: 49-77
        • Fukuda S.
        • Bian H.
        • King A.G.
        • et al.
        The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment.
        Blood. 2007; 110: 860-869
        • Hoggatt J.
        • Singh P.
        • Tate T.A.
        • et al.
        Rapid mobilization reveals a highly engraftable hematopoietic stem cell.
        Cell. 2018; 172: 191-204.e10
        • Richard R.E.
        • Siritanaratkul N.
        • Jonlin E.
        • et al.
        Collection of blood stem cells from patients with sickle cell anemia.
        Blood Cells Mol Dis. 2005; 35: 384-388
        • Yannaki E.
        • Papayannopoulou T.
        • Jonlin E.
        • et al.
        Hematopoietic stem cell mobilization for gene therapy of adult patients with severe β-thalassemia: results of clinical trials using G-CSF or plerixafor in splenectomized and nonsplenectomized subjects.
        Mol Ther. 2012; 20: 230-238
        • Constantinou V.C.
        • Bouinta A.
        • Karponi G.
        • et al.
        Poor stem cell harvest may not always be related to poor mobilization: lessons gained from a mobilization study in patients with β-thalassemia major.
        Transfusion. 2017; 57: 1031-1039