Advertisement
Review Article| Volume 40, ISSUE 3, P357-367, September 2020

Diagnostic Testing for Patients with Spinal Muscular Atrophy

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sugarman E.A.
        • Nagan N.
        • Zhu H.
        • et al.
        Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72 400 specimens.
        Eur J Hum Genet. 2012; 20: 27-32
        • Verhaart I.E.C.
        • Robertson A.
        • Wilson I.J.
        • et al.
        Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - a literature review.
        Orphanet J Rare Dis. 2017; 12
        • Swoboda K.J.
        • Prior T.W.
        • Scott C.B.
        • et al.
        Natural history of denervation in SMA: relation to age, SMN2 copy number, and function.
        Ann Neurol. 2005; https://doi.org/10.1002/ana.20473
        • Calucho M.
        • Bernal S.
        • Alías L.
        • et al.
        Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases.
        Neuromuscul Disord. 2018; https://doi.org/10.1016/j.nmd.2018.01.003
        • Finkel R.S.
        • McDermott M.P.
        • Kaufmann P.
        • et al.
        Observational study of spinal muscular atrophy type I and implications for clinical trials.
        Neurology. 2014; 83: 810-817
        • Kolb S.J.
        • Coffey C.S.
        • Yankey J.W.
        • et al.
        Natural history of infantile-onset spinal muscular atrophy.
        Ann Neurol. 2017; 82: 883-891
        • Waldrop M.A.
        • Kolb S.J.
        Current treatment options in neurology—SMA therapeutics.
        Curr Treat Options Neurol. 2019; 21https://doi.org/10.1007/s11940-019-0568-z
      1. FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality _ FDA.
        (Available at:) (Accessed October 14, 2019)
        • Finkel R.S.
        • Mercuri E.
        • Darras B.T.
        • et al.
        Nusinersen versus sham control in infantile-onset spinal muscular atrophy.
        N Engl J Med. 2017; 377: 1723-1732
        • Mercuri E.
        • Darras B.T.
        • Chiriboga C.A.
        • et al.
        Nusinersen versus sham control in later-onset spinal muscular atrophy.
        N Engl J Med. 2018; 378: 625-635
        • Darras B.T.
        • Chiriboga C.A.
        • Iannaccone S.T.
        • et al.
        Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies.
        Neurology. 2019; 92: e2492-e2506
        • Mendell J.R.
        • Al-Zaidy S.
        • Shell R.
        • et al.
        Single-dose gene-replacement therapy for spinal muscular atrophy.
        N Engl J Med. 2017; 377: 1713-1722
        • Al-Zaidy S.A.
        • Mendell J.R.
        From clinical trials to clinical practice: practical considerations for gene replacement therapy in SMA type 1.
        Pediatr Neurol. 2019; https://doi.org/10.1016/j.pediatrneurol.2019.06.007
        • De Vivo D.C.
        • Topaloglu H.
        • Swoboda K.J.
        • et al.
        Nusinersen in infants who initiate treatment in a presymptomatic stage of spinal muscular atrophy (SMA): interim efficacy and safety results from the phase 2 NURTURE study (S25.001).
        Neurology. 2019; 92 (Available at:): S25-S2001
        • Darras B.T.
        • Markowitz J.A.
        • Monani U.R.
        • et al.
        Spinal muscular atrophies.
        in: Darras B.T. Jones H.R. Ryan M.M. Neuromuscular disorders of infancy, childhood, and adolescence. 2nd edition. Elsevier/Academic Press, London2015: 117-145 (Available at:) (Accessed December 23, 2019)
        • Lefebvre S.
        • Reboullet S.
        • Clermont O.
        • et al.
        Identification and characterization of a spinal muscular atrophy-determining gene.
        Cell. 1995; 80: 155-165
        • Bürglen L.
        • Lefebvre S.
        • Clermont O.
        • et al.
        Structure and organization of the human survival motor neurone (SMN) gene.
        Genomics. 1996; 32: 479-482
        • Talbot K.
        • Tizzano E.F.
        The clinical landscape for SMA in a new therapeutic era.
        Gene Ther. 2017; 24: 529-533
        • Prior T.W.
        • Nagan N.
        • Sugarman E.A.
        • et al.
        Technical standards and guidelines for spinal muscular atrophy testing.
        Genet Med. 2011; https://doi.org/10.1097/GIM.0b013e318220d523
        • Wirth B.
        An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA).
        Hum Mutat. 2000; 15: 228-237
        • Ogino S.
        • Wilson R.B.
        Spinal muscular atrophy: molecular genetics and diagnostics.
        Expert Rev Mol Diagn. 2004; 4: 15-29
        • Eijk-Van Os P.G.C.
        • Schouten J.P.
        Multiplex ligation-dependent probe amplification (MLPA ®) for the detection of copy number variation in genomic sequences.
        Methods Mol Biol. 2011; 688: 97-126
        • Rudnik-Schöneborn S.
        • Eggermann T.
        • Kress W.
        • et al.
        Clinical utility gene card for: proximal spinal muscular atrophy.
        Eur J Hum Genet. 2012; 20: 713
        • Abbaszadegan M.R.
        • Keify F.
        • Ashrafzadeh F.
        • et al.
        Gene dosage analysis of proximal spinal muscular atrophy carriers using real-time PCR.
        Arch Iran Med. 2011; 14: 188-191
        • Godinho FM de S.
        • Bock H.
        • Gheno T.C.
        • et al.
        Molecular analysis of spinal muscular atrophy: a genotyping protocol based on TaqMan® real-time PCR.
        Genet Mol Biol. 2012; 35: 955-959
        • van der Steege G.
        • Grootscholten P.M.
        • van der Vlies P.
        • et al.
        PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy.
        Lancet. 1995; 345 (Available at:) (Accessed December 16, 2019): 985-986
        • Feng Y.
        • Ge X.
        • Meng L.
        • et al.
        The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing.
        Genet Med. 2017; https://doi.org/10.1038/gim.2016.215
        • Yang L.
        • Cao Y.Y.
        • Qu Y.J.
        • et al.
        [Sanger sequencing for the diagnosis of spinal muscular atrophy patients with survival motor neuron gene 1 compound heterozygous mutation].
        Zhonghua Yi Xue Za Zhi. 2017; 97: 418-423
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and Genomics and the Association for Molecular pathology.
        Genet Med. 2015; 17: 405-424
      2. Health Bureau of the Health C. Newborn Screening for Spinal Muscular Atrophy A Summary of the Evidence and Advisory Committee Decision.; 2018. Available at: https://www.hrsa.gov/sites/default/files/hrsa/advisory-committees/heritable-disorders/rusp/previous-nominations/sma-consumer-summary.pdf

      3. Newborn screening for spinal muscular atrophy - Cure SMA.
        (Available at:) (Accessed November 8, 2019)
        • Matern D.
        • Tarini B.
        • Kemper A.R.
        • et al.
        Evidence-based review of newborn screening for spinal muscular atrophy (SMA): final report (v5.2).
        (Available at:) (Accessed November 10, 2019)
        • Kraszewski J.N.
        • Kay D.M.
        • Stevens C.F.
        • et al.
        Pilot study of population-based newborn screening for spinal muscular atrophy in New York state.
        Genet Med. 2017; 20https://doi.org/10.1038/gim.2017.152
        • Chien Y.-H.
        • Chiang S.-C.
        • Weng W.-C.
        • et al.
        Presymptomatic diagnosis of spinal muscular atrophy through newborn screening.
        J Pediatr. 2017; 190https://doi.org/10.1016/j.jpeds.2017.06.042
        • Vidal-Folch N.
        • Gavrilov D.
        • Raymond K.
        • et al.
        Multiplex droplet digital PCR method applicable to newborn screening, carrier status, and assessment of spinal muscular atrophy.
        Clin Chem. 2018; 64: 1753-1761
        • Taylor J.L.
        • Lee F.K.
        • Yazdanpanah G.K.
        • et al.
        Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency.
        Clin Chem. 2015; 61: 412-419
        • Romero S.
        • Biggio J.R.
        • Saller D.N.
        • et al.
        Committee opinion: carrier screening for genetic Conditions. Vol 691.
        (Available at:) (Accessed November 10, 2019)
        • Hendrickson B.C.
        • Donohoe C.
        • Akmaev V.R.
        • et al.
        Differences in SMN1 allele frequencies among ethnic groups within North America.
        J Med Genet. 2009; 46: 641-644
        • Prior T.W.
        Carrier screening for spinal muscular atrophy.
        Genet Med. 2008; 10: 840-842
        • Wu B.
        Introductory chapter: new theory and technology in early clinical embryogenesis.
        in: Bin Wu Feng Huai L. Embryology - theory and practice. IntechOpen, London, UK2019https://doi.org/10.5772/intechopen.88331
        • Alías L.
        • Bernal S.
        • Calucho M.
        • et al.
        Utility of two SMN1 variants to improve spinal muscular atrophy carrier diagnosis and genetic counselling.
        Eur J Hum Genet. 2018; 26: 1554-1557
        • Luo M.
        • Liu L.
        • Peter I.
        • et al.
        An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy.
        Genet Med. 2014; 16: 149-156
        • Ghi T.
        • Sotiriadis A.
        • Calda P.
        • et al.
        ISUOG practice guidelines: invasive procedures for prenatal diagnosis.
        Ultrasound Obstet Gynecol. 2016; 48: 256-268
        • De Rycke M.
        • Goossens V.
        • Kokkali G.
        • et al.
        ESHRE PGD Consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013.
        Hum Reprod. 2017; 32: 1974-1994
        • Parikh F.R.
        • Athalye A.S.
        • Naik N.J.
        • et al.
        Preimplantation genetic testing: its evolution, where are we today?.
        J Hum Reprod Sci. 2018; 11: 306-314
        • Sullivan-Pyke C.
        • Dokras A.
        Preimplantation genetic screening and preimplantation genetic diagnosis.
        Obstet Gynecol Clin North Am. 2018; 45: 113-125
        • Lee V.C.Y.
        • Chow J.F.C.
        • Yeung W.S.B.
        • et al.
        Preimplantation genetic diagnosis for monogenic diseases.
        Best Pract Res Clin Obstet Gynaecol. 2017; 44: 68-75
        • Goldman K.N.
        • Nazem T.
        • Berkeley A.
        • et al.
        Preimplantation genetic diagnosis (PGD) for monogenic disorders: the value of concurrent aneuploidy screening.
        J Genet Couns. 2016; 25: 1327-1337
        • Glascock J.
        • Sampson J.
        • Haidet-Phillips A.
        • et al.
        Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening.
        J Neuromuscul Dis. 2018; 5: 145-158