Advertisement
Review Article| Volume 40, ISSUE 3, P271-287, September 2020

Genetic Testing for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Impact on Clinical Management

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blasco H.
        • Patin F.
        • Andres C.R.
        • et al.
        Amyotrophic lateral sclerosis, 2016: existing therapies and the ongoing search for neuroprotection.
        Expert Opin Pharmacother. 2016; 17: 1669-1682
        • Writing Group, Edaravone (MCI-186) ALS 19 Study Group
        Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial.
        Lancet Neurol. 2017; 16: 505-512
        • Rabinovici G.D.
        • Miller B.L.
        Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management.
        CNS Drugs. 2010; 24: 375-398
        • Burrell J.R.
        • Halliday G.M.
        • Kril J.J.
        • et al.
        The frontotemporal dementia-motor neuron disease continuum.
        Lancet. 2016; 388: 919-931
        • Strong M.J.
        • Lomen-Hoerth C.
        • Caselli R.J.
        • et al.
        Cognitive impairment, frontotemporal dementia, and the motor neuron diseases.
        Ann Neurol. 2003; 54: S20-S23
        • Lomen-Hoerth C.
        • Anderson T.
        • Miller B.
        The overlap of amyotrophic lateral sclerosis and frontotemporal dementia.
        Neurology. 2002; 59: 1077-1079
        • Lomen-Hoerth C.
        • Murphy J.
        • Langmore S.
        • et al.
        Are amyotrophic lateral sclerosis patients cognitively normal?.
        Neurology. 2003; 60: 1094-1097
        • Tsermentseli S.
        • Leigh P.N.
        • Goldstein L.H.
        The anatomy of cognitive impairment in amyotrophic lateral sclerosis: more than frontal lobe dysfunction.
        Cortex. 2012; 48: 166-182
        • Neumann M.
        • Sampathu D.M.
        • Kwong L.K.
        • et al.
        Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
        Science. 2006; 314: 130-133
        • Mackenzie I.R.A.
        • Neumann M.
        Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies.
        J Neurochem. 2016; 138: 54-70
        • Renton A.E.
        • Majounie E.
        • Waite A.
        • et al.
        A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.
        Neuron. 2011; 72: 257-268
        • Majounie E.
        • Renton A.E.
        • Mok K.
        • et al.
        Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.
        Lancet Neurol. 2012; 11: 323-330
        • DeJesus-Hernandez M.
        • Mackenzie I.R.
        • Boeve B.F.
        • et al.
        Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.
        Neuron. 2011; 72: 245-256
        • Vatsavayai S.C.
        • Nana A.L.
        • Yokoyama J.S.
        • et al.
        C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies.
        Acta Neuropathol. 2019; 137: 1-26
        • Chia R.
        • Chiò A.
        • Traynor B.J.
        Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications.
        Lancet Neurol. 2018; 17: 94-102
        • Turner M.R.
        • Al-Chalabi A.
        • Chio A.
        • et al.
        Genetic screening in sporadic ALS and FTD.
        J Neurol Neurosurg Psychiatry. 2017; 88: 1042-1044
        • Rosen D.R.
        • Siddique T.
        • Patterson D.
        • et al.
        Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.
        Nature. 1993; 362: 59-62
        • Saberi S.
        • Stauffer J.E.
        • Schulte D.J.
        • et al.
        Neuropathology of amyotrophic lateral sclerosis and its variants.
        Neurol Clin. 2015; 33: 855-876
        • Chiò A.
        • Traynor B.J.
        • Lombardo F.
        • et al.
        Prevalence of SOD1 mutations in the Italian ALS population.
        Neurology. 2008; 70: 533-537
        • Alavi A.
        • Nafissi S.
        • Rohani M.
        • et al.
        Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients.
        Neurobiol Aging. 2013; 34: 1516.e1-8
        • Zou Z.-Y.
        • Zhou Z.-R.
        • Che C.-H.
        • et al.
        Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis.
        J Neurol Neurosurg Psychiatry. 2017; 88: 540-549
        • Kenna K.P.
        • McLaughlin R.L.
        • Byrne S.
        • et al.
        Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing.
        J Med Genet. 2013; 50: 776-783
        • Själander A.
        • Beckman G.
        • Deng H.-X.
        • et al.
        The D90A mutation results in a polymorphism of Cu, Zn superoxide dismutase that is prevalent in northern Sweden and Finland.
        Hum Mol Genet. 1995; 4: 1105-1108
        • Ly C.V.
        • Miller T.M.
        Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis.
        Curr Opin Neurol. 2018; 31: 648-654
        • Ogaki K.
        • Li Y.
        • Takanashi M.
        • et al.
        Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS.
        Parkinsonism Relat Disord. 2013; 19: 15-20
        • Rohrer J.D.
        • Paviour D.
        • Vandrovcova J.
        • et al.
        Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome.
        Neurodegener Dis. 2011; 8: 149-152
        • Spina S.
        • Farlow M.R.
        • Unverzagt F.W.
        • et al.
        The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family.
        Brain. 2008; 131: 72-89
        • Moore K.M.
        • Nicholas J.
        • Grossman M.
        • et al.
        Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study.
        Lancet Neurol. 2019; https://doi.org/10.1016/S1474-4422(19)30394-1
        • Benussi L.
        • Ghidoni R.
        • Pegoiani E.
        • et al.
        Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide.
        Neurobiol Dis. 2009; 33: 379-385
        • Lindquist S.G.
        • Holm I.E.
        • Schwartz M.
        • et al.
        Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation.
        Eur J Neurol. 2008; 15: 377-385
        • Ikeuchi T.
        • Kaneko H.
        • Miyashita A.
        • et al.
        Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406W mutations.
        Dement Geriatr Cogn Disord. 2008; 26: 43-49
        • Rademakers R.
        • Dermaut B.
        • Peeters K.
        • et al.
        Tau (MAPT) mutation Arg406Trp presenting clinically with Alzheimer disease does not share a common founder in Western Europe.
        Hum Mutat. 2003; 22: 409-411
        • van Swieten J.C.
        • Stevens M.
        • Rosso S.M.
        • et al.
        Phenotypic variation in hereditary frontotemporal dementia with tau mutations.
        Ann Neurol. 1999; 46: 617-626
        • Reed L.A.
        • Grabowski T.J.
        • Schmidt M.L.
        • et al.
        Autosomal dominant dementia with widespread neurofibrillary tangles.
        Ann Neurol. 1997; 42: 564-572
        • Di Fonzo A.
        • Ronchi D.
        • Gallia F.
        • et al.
        Lower motor neuron disease with respiratory failure caused by a novel MAPT mutation.
        Neurology. 2014; 82: 1990-1998
        • Zarranz J.J.
        • Ferrer I.
        • Lezcano E.
        • et al.
        A novel mutation (K317M) in the MAPT gene causes FTDP and motor neuron disease.
        Neurology. 2005; 64: 1578-1585
        • Skibinski G.
        • Parkinson N.J.
        • Brown J.M.
        • et al.
        Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia.
        Nat Genet. 2005; 37: 806-808
        • Ng A.S.
        • Rademakers R.
        • Miller B.
        Frontotemporal dementia: a bridge between dementia and neuromuscular disease.
        Ann N Y Acad Sci. 2015; 1338: 71-93
        • Holm I.E.
        • Isaacs A.M.
        • Mackenzie I.R.A.
        Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene.
        Acta Neuropathol. 2009; 118: 719-720
        • Mackenzie I.R.A.
        • Neumann M.
        • Cairns N.J.
        • et al.
        Novel types of frontotemporal lobar degeneration: beyond tau and TDP-43.
        J Mol Neurosci. 2011; 45: 402-408
        • Wojtas A.
        • Heggeli K.A.
        • Finch N.
        • et al.
        C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic.
        Am J Neurodegener Dis. 2012; 1: 107-118
        • Gass J.
        • Cannon A.
        • Mackenzie I.R.
        • et al.
        Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration.
        Hum Mol Genet. 2006; 15: 2988-3001
        • Le Ber I.
        • Camuzat A.
        • Guerreiro R.
        • et al.
        SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis.
        JAMA Neurol. 2013; 70: 1403-1410
        • Chiang H.-H.
        • Andersen P.M.
        • Tysnes O.-B.
        • et al.
        Novel TARDBP mutations in Nordic ALS patients.
        J Hum Genet. 2012; 57: 316-319
        • Benajiba L.
        • Le Ber I.
        • Camuzat A.
        • et al.
        TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration.
        Ann Neurol. 2009; 65: 470-473
        • Floris G.
        • Borghero G.
        • Cannas A.
        • et al.
        Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations.
        J Neurol. 2015; 262: 375-384
        • Borroni B.
        • Bonvicini C.
        • Alberici A.
        • et al.
        Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease.
        Hum Mutat. 2009; 30: E974-E983
        • Kovacs G.G.
        • Murrell J.R.
        • Horvath S.
        • et al.
        TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea.
        Mov Disord. 2009; 24: 1843-1847
        • Gendron T.F.
        • Rademakers R.
        • Petrucelli L.
        TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43.
        J Alzheimers Dis. 2013; 33: S35-S45
        • Takeda T.
        • Iijima M.
        • Shimizu Y.
        • et al.
        p.N345K mutation in TARDBP in a patient with familial amyotrophic lateral sclerosis: an autopsy case.
        Neuropathology. 2019; 39: 286-293
        • Deng H.
        • Gao K.
        • Jankovic J.
        The role of FUS gene variants in neurodegenerative diseases.
        Nat Rev Neurol. 2014; 10: 337-348
        • Lattante S.
        • Rouleau G.A.
        • Kabashi E.
        TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update.
        Hum Mutat. 2013; 34: 812-826
        • Yan J.
        • Deng H.-X.
        • Siddique N.
        • et al.
        Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia.
        Neurology. 2010; 75: 807-814
        • Hofmann J.W.
        • Seeley W.W.
        • Huang E.J.
        RNA binding proteins and the pathogenesis of frontotemporal lobar degeneration.
        Annu Rev Pathol. 2019; 14: 469-495
        • Weihl C.C.
        • Pestronk A.
        • Kimonis V.E.
        Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia.
        Neuromuscul Disord. 2009; 19: 308-315
        • Watts G.D.J.
        • Wymer J.
        • Kovach M.J.
        • et al.
        Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein.
        Nat Genet. 2004; 36: 377-381
        • van der Zee J.
        • Gijselinck I.
        • Dillen L.
        • et al.
        A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats.
        Hum Mutat. 2013; 34: 363-373
        • Boeve B.F.
        • Graff-Radford N.R.
        Cognitive and behavioral features of c9FTD/ALS.
        Alzheimers Res Ther. 2012; 4: 29
        • Hsiung G.-Y.R.
        • DeJesus-Hernandez M.
        • Feldman H.H.
        • et al.
        Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p.
        Brain. 2012; 135: 709-722
        • Al-Sarraj S.
        • King A.
        • Troakes C.
        • et al.
        p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS.
        Acta Neuropathol. 2011; 122: 691-702
        • Murphy N.A.
        • Arthur K.C.
        • Tienari P.J.
        • et al.
        Age-related penetrance of the C9orf72 repeat expansion.
        Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-02364-1
        • Crook A.
        • McEwen A.
        • Fifita J.A.
        • et al.
        The C9orf72 hexanucleotide repeat expansion presents a challenge for testing laboratories and genetic counseling.
        Amyotroph Lateral Scler Frontotemporal Degener. 2019; 20: 310-316
        • Rubino E.
        • Rainero I.
        • Chiò A.
        • et al.
        SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
        Neurology. 2012; 79: 1556-1562
        • Foster A.
        • Scott D.
        • Layfield R.
        • et al.
        An FTLD-associated SQSTM1 variant impacts Nrf2 and NF-κB signalling and is associated with reduced phosphorylation of p62.
        Mol Cell Neurosci. 2019; 98: 32-45
        • Rea S.L.
        • Majcher V.
        • Searle M.S.
        • et al.
        SQSTM1 mutations – bridging Paget disease of bone and ALS/FTLD.
        Exp Cell Res. 2014; 325: 27-37
        • Kovacs G.G.
        • van der Zee J.
        • Hort J.
        • et al.
        Clinicopathological description of two cases with SQSTM1 gene mutation associated with frontotemporal dementia.
        Neuropathology. 2016; 36: 27-38
        • Deng H.-X.
        • Chen W.
        • Hong S.-T.
        • et al.
        Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia.
        Nature. 2011; 477: 211-215
        • Fecto F.
        • Siddique T.
        Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia.
        J Mol Neurosci. 2011; 45: 663-675
        • Williams J.A.
        • Thomas A.M.
        • Li G.
        • et al.
        Tissue specific induction of p62/Sqstm1 by Farnesoid X receptor.
        PLoS One. 2012; 7https://doi.org/10.1371/journal.pone.0043961
        • Koriath C.A.M.
        • Bocchetta M.
        • Brotherhood E.
        • et al.
        The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: a longitudinal case report.
        Alzheimers Dement (Amst). 2017; 6: 75-81
        • Cirulli E.T.
        • Lasseigne B.N.
        • Petrovski S.
        • et al.
        Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.
        Science. 2015; 347: 1436-1441
        • Freischmidt A.
        • Wieland T.
        • Richter B.
        • et al.
        Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia.
        Nat Neurosci. 2015; 18: 631-636
        • Gijselinck I.
        • Van Mossevelde S.
        • van der Zee J.
        • et al.
        Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort.
        Neurology. 2015; 85: 2116-2125
        • Pottier C.
        • Bieniek K.F.
        • Finch N.
        • et al.
        Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease.
        Acta Neuropathol. 2015; 130: 77-92
      1. Moreno C, Hoover B, Likanje M, et al. Pathogenic ATXN2 repeat expansions are as common as TARDBP mutations in large ALS cohorts. In: Northeast ALS Consortium Conference, October 4, 2019, Clearwater Beach, FL.

        • Elden A.C.
        • Kim H.-J.
        • Hart M.P.
        • et al.
        Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.
        Nature. 2010; 466: 1069-1075
        • Wagner K.N.
        • Nagaraja H.
        • Allain D.C.
        • et al.
        Patients with amyotrophic lateral sclerosis have high interest in and limited access to genetic testing.
        J Genet Couns. 2017; 26: 604-611
        • Wagner K.N.
        • Nagaraja H.N.
        • Allain D.C.
        • et al.
        Patients with sporadic and familial amyotrophic lateral sclerosis found value in genetic testing.
        Mol Genet Genomic Med. 2018; 6: 224-229
        • Goldman J.S.
        • Van Deerlin V.M.
        Alzheimer’s disease and frontotemporal dementia: the current state of genetics and genetic testing since the advent of next-generation sequencing.
        Mol Diagn Ther. 2018; 22: 505-513
        • Vajda A.
        • McLaughlin R.L.
        • Heverin M.
        • et al.
        Genetic testing in ALS: a survey of current practices.
        Neurology. 2017; 88: 991-999
        • Klepek H.
        • Nagaraja H.
        • Goutman S.A.
        • et al.
        Lack of consensus in ALS genetic testing practices and divergent views between ALS clinicians and patients.
        Amyotroph Lateral Scler Frontotemporal Degener. 2019; 20: 216-221
        • Roggenbuck J.
        • Quick A.
        • Kolb S.J.
        Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians.
        Genet Med. 2017; 19: 267-274
        • Goldman J.S.
        • Farmer J.M.
        • Wood E.M.
        • et al.
        Comparison of family histories in FTLD subtypes and related tauopathies.
        Neurology. 2005; 65: 1817-1819
        • Beck J.
        • Rohrer J.D.
        • Campbell T.
        • et al.
        A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series.
        Brain. 2008; 131: 706-720
        • Umoh M.E.
        • Fournier C.
        • Li Y.
        • et al.
        Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population.
        Neurology. 2016; 87: 1024-1030
        • Mahoney C.J.
        • Downey L.E.
        • Beck J.
        • et al.
        The presenilin 1 P264L mutation presenting as non-fluent/agrammatic primary progressive aphasia.
        J Alzheimers Dis. 2013; 36: 239-243
        • Riudavets M.A.
        • Bartoloni L.
        • Troncoso J.C.
        • et al.
        Familial dementia with frontotemporal features associated with M146V presenilin-1 mutation.
        Brain Pathol. 2013; 23: 595-600
        • Ratnavalli E.
        • Brayne C.
        • Dawson K.
        • et al.
        The prevalence of frontotemporal dementia.
        Neurology. 2002; 58: 1615-1621
        • Truty R.
        • Patil N.
        • Sankar R.
        • et al.
        Possible precision medicine implications from genetic testing using combined detection of sequence and intragenic copy number variants in a large cohort with childhood epilepsy.
        Epilepsia Open. 2019; 4: 397-408
        • Roggenbuck J.
        • Palettas M.
        • Vicini L.
        • et al.
        Incidence of pathogenic, likely pathogenic, and uncertain ALS variants in a clinic cohort.
        Neurol Genet. 2020; 6https://doi.org/10.1212/NXG.0000000000000390
        • Hübers A.
        • Just W.
        • Rosenbohm A.
        • et al.
        De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients.
        Neurobiol Aging. 2015; 36: 3117.e1-3117.e6
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Akimoto C.
        • Volk A.E.
        • van Blitterswijk M.
        • et al.
        A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories.
        J Med Genet. 2014; 51: 419-424
        • Rollinson S.
        • Bennion Callister J.
        • Young K.
        • et al.
        Small deletion in C9orf72 hides a proportion of expansion carriers in FTLD.
        Neurobiol Aging. 2015; 36: 1601.e1-5
        • Klepek H.
        • Goutman S.A.
        • Quick A.
        • et al.
        Variable reporting of C9orf72 and a high rate of uncertain results in ALS genetic testing.
        Neurol Genet. 2019; 5: e301
        • Gijselinck I.
        • Van Mossevelde S.
        • van der Zee J.
        • et al.
        The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter.
        Mol Psychiatry. 2016; 21: 1112-1124