Advertisement
Review Article| Volume 40, ISSUE 3, P231-256, September 2020

Optimizing Genetic Diagnosis of Neurodevelopmental Disorders in the Clinical Setting

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sherr E.H.
        • Michelson D.J.
        • Shevell M.I.
        • et al.
        Neurodevelopment disorders and genetic testing: current approaches and future advances.
        Ann Neurol. 2013; 72 (Available at:): 164-170
        • American Psychiatric Association
        Diagnostic and statistical manual of mental disorders: diagnostic and statistical manual of mental disorders.
        5th edition. American Psychiatric Association, Arlington (VA)2013
        • Boat T.F.
        • Wu J.T.
        Clinical characteristics of intellectual disabilities. Mental disorders and disabilities among low-income children.
        The National Academic Press, Washington, DC2015
        • Sharma S.R.
        • Gonda X.
        • Tarazi F.I.
        Autism spectrum disorder: classification, diagnosis and therapy.
        Pharmacol Ther. 2018; 190 (Available at:): 91-104
        • Volkmar F.R.
        • McPartland J.C.
        From Kanner to DSM-5: autism as an evolving diagnostic concept.
        Annu Rev Clin Psychol. 2014; 10 (Available at:): 193-212
        • Lukmanji S.
        • Manji S.A.
        • Kadhim S.
        • et al.
        The co-occurrence of epilepsy and autism: a systematic review.
        Epilepsy Behav. 2019; 98 (Available at:): 238-248
      1. CDC website.
        (Available at:) (Accessed November 23, 2019)
        • D'Arrigo S.
        • Gavazzi F.
        • Alfei E.
        • et al.
        The diagnostic yield of array comparative genomic hybridization is high regardless of severity of intellectual disability/developmental delay in children.
        J Child Neurol. 2016; 31 (Available at:): 691-699
        • Miller D.T.
        • Adam M.P.
        • Aradhya S.
        • et al.
        Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.
        Am J Hum Genet. 2010; 86 (Available at:): 749-764
        • Flore L.A.
        • Milunsky J.M.
        Updates in the genetic evaluation of the child with global developmental delay or intellectual disability.
        Semin Pediatr Neurol. 2012; 19 (Available at:): 173-180
        • Shevell M.
        • Ashwal S.
        • Donley D.
        • et al.
        Practice parameter: evaluation of the child with global developmental delay: report of the quality standards subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society.
        Neurology. 2003; 60 (Available at:): 367-380
        • Hochstenbach R.
        • Slunga-Tallberg A.
        • Devlin C.
        • et al.
        Fading competency of cytogenetic diagnostic laboratories: the alarm bell has started to ring.
        Eur J Hum Genet. 2017; 25 (Available at:): 273-274
        • Beaudet A.L.
        The utility of chromosomal microarray analysis in developmental and behavioral pediatrics.
        Child Dev. 2013; 84 (Available at:): 121-132
        • Boone P.M.
        • Bacino C.A.
        • Shaw C.A.
        • et al.
        Detection of clinically relevant exonic copy-number changes by array CGH.
        Hum Mutat. 2010; 31 (Available at:): 1326-1342
        • Schaaf C.P.
        • Wiszniewska J.
        • Beaudet A.L.
        Copy number and SNP arrays in clinical diagnostics.
        Annu Rev Genomics Hum Genet. 2011; 12 (Available at:): 25-51
        • Tan W.H.
        • Bird L.M.
        • Thibert R.L.
        • et al.
        If not Angelman, what is it? A review of Angelman-like syndromes.
        Am J Med Genet A. 2014; 164A (Available at:): 975-992
        • Hayward B.E.
        • Kumari D.
        • Usdin K.
        Recent advances in assays for the fragile X-related disorders.
        Hum Genet. 2017; 136 (Available at:): 1313-1327
        • Aref-Eshghi E.
        • Bend E.G.
        • Colaiacovo S.
        • et al.
        Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions.
        Am J Hum Genet. 2019; 104 (Available at:): 685-700
        • Barros-Silva D.
        • Marques C.J.
        • Henrique R.
        • et al.
        Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications.
        Genes (Basel). 2018; 9 ([pii:E429]. Available at:)
        • Aspromonte M.C.
        • Bellini M.
        • Gasparini A.
        • et al.
        Characterization of intellectual disability and autism comorbidity through gene panel sequencing.
        Hum Mutat. 2019; 40 (Available at:): 1346-1363
        • Venter J.C.
        • Adams M.D.
        • Myers E.W.
        • et al.
        The sequence of the human genome.
        Science. 2001; 291 (Available at:): 1304-1351
        • Warr A.
        • Robert C.
        • Hume D.
        • et al.
        Exome sequencing: current and future perspectives.
        G3 (Bethesda). 2015; 5 (Available at:): 1543-1550
        • Srivastava S.
        • Love-Nichols J.A.
        • Dies K.A.
        • et al.
        Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders.
        Genet Med. 2019; 21 (Available at:): 2413-2421
        • Behjati S.
        • Tarpey P.S.
        What is next generation sequencing?.
        Arch Dis Child. 2013; 98 (Available at:): 236-238
        • Baldridge D.
        • Heeley J.
        • Vineyard M.
        • et al.
        The Exome Clinic and the role of medical genetics expertise in the interpretation of exome sequencing results.
        Genet Med. 2017; 19 (Available at:): 1040-1048
        • Shigemizu D.
        • Momozawa Y.
        • Abe T.
        • et al.
        Performance comparison of four commercial human whole-exome capture platforms.
        Sci Rep. 2015; 5 (Available at:): 12742
        • Whitford W.
        • Lehnert K.
        • Snell R.G.
        • et al.
        Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data.
        J Biomed Inform. 2019; 94 (Available at:): 103174
        • Landry L.G.
        • Ali N.
        • Williams D.R.
        • et al.
        Lack of diversity in genomic databases is a barrier to translating precision medicine research into practice.
        Health Aff (Millwood). 2018; 37 (Available at:): 780-785
        • Clark M.M.
        • Stark Z.
        • Farnaes L.
        • et al.
        Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases.
        NPJ Genom Med. 2018; 3 (Available at:): 16
        • Mu X.J.
        • Lu Z.J.
        • Kong Y.
        • et al.
        Analysis of genomic variation in non-coding elements using population-scale sequencing data from the 1000 Genomes Project.
        Nucleic Acids Res. 2011; 39 (Available at:): 7058-7076
        • Ward L.D.
        • Kellis M.
        Interpreting noncoding genetic variation in complex traits and human disease.
        Nat Biotechnol. 2012; 30 (Available at:): 1095-1106
        • Botstein D.
        • Risch N.
        Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease.
        Nat Genet. 2003; 33 (Available at:): 228-237
        • Khurana E.
        • Fu Y.
        • Colonna V.
        • et al.
        Integrative annotation of variants from 1092 humans: application to cancer genomics.
        Science. 2013; 342 (Available at:): 1235587
        • Schluth-Bolard C.
        • Diguet F.
        • Chatron N.
        • et al.
        Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders.
        J Med Genet. 2019; 56 (Available at:): 526-535
        • Dong Z.
        • Ye L.
        • Yang Z.
        • et al.
        Balanced chromosomal rearrangement detection by low-pass whole-genome sequencing.
        Curr Protoc Hum Genet. 2018; 96 (Available at:): 8.18.1-8.18.16
        • Parikh S.
        • Goldstein A.
        • Koenig M.K.
        • et al.
        Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society.
        Genet Med. 2015; 17 (Available at:): 689-701
        • Duan M.
        • Chen L.
        • Ge Q.
        • et al.
        Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data.
        Gene. 2019; 699 (Available at:): 145-154
        • van Dijk E.L.
        • Jaszczyszyn Y.
        • Naquin D.
        • et al.
        The third revolution in sequencing technology.
        Trends Genet. 2018; 34 (Available at:): 666-681
        • Morsheimer M.
        • Brown Whitehorn T.F.
        • Heimall J.
        • et al.
        The immune deficiency of chromosome 22q11.2 deletion syndrome.
        Am J Med Genet A. 2017; 173 (Available at:): 2366-2372
        • Hermens M.
        • van der Knaap M.S.
        • Kamsteeg E.J.
        • et al.
        A brother and sister with intellectual disability and characteristic neuroimaging findings.
        Eur J Paediatr Neurol. 2018; 22 (Available at:): 866-869
        • Pearson T.S.
        • Pons R.
        • Ghaoui R.
        • et al.
        Genetic mimics of cerebral palsy.
        Mov Disord. 2019; 34 (Available at:): 625-636
        • Zarate Y.A.
        • Bosanko K.A.
        • Gripp K.W.
        Using facial analysis technology in a typical genetic clinic: experience from 30 individuals from a single institution.
        J Hum Genet. 2019; 64 (Available at:): 1243-1245
        • Çaksen H.
        • Aktar F.
        • Yıldırım G.
        • et al.
        Importance of pedigree in patients with familial epilepsy and intellectual disability.
        Sudan J Paediatr. 2019; 19 (Available at:): 52-56
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17 (Available at:): 405-424
        • Harrison S.M.
        • Rehm H.L.
        Is 'likely pathogenic' really 90% likely? Reclassification data in ClinVar.
        Genome Med. 2019; 11 (Available at:): 72
        • Duzkale H.
        • Shen J.
        • McLaughlin H.
        • et al.
        A systemicatic approach to assessing the clinical significance of genetic variants.
        Clin Genet. 2013; 84 (Available at:): 453-463
        • Hoffman-Andrews L.
        The known unknown: the challenges of genetic variants of uncertain significance in clinical practice.
        J Law Biosci. 2017; 4 (Available at:): 648-657
        • Vears D.F.
        • Sénécal K.
        • Borry P.
        Reporting practices for variants of uncertain significance from next generation sequencing technologies.
        Eur J Med Genet. 2017; 60 (Available at:): 553-558
        • Reiff M.
        • Bernhardt B.A.
        • Mulchandani S.
        • et al.
        What does it mean?": uncertainties in understanding results of chromosomal microarray testing.
        Genet Med. 2012; 14 (Available at:): 250-258
        • Katsanis S.H.
        • Katsanis N.
        Molecular genetic testing and the future of clinical genomics.
        Nat Rev Genet. 2013; 14 (Available at:): 415-426
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536 (Available at:): 285-291
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581 (434-3. Available at: https://doi.org/10.1038/s41586-020-2308-7)
        • Landrum M.J.
        • Lee J.M.
        • Benson M.
        • et al.
        ClinVar: improving access to variant interpretation and supporting evidence.
        Nucleic Acids Res. 2018; 46 (Available at:): D1062-D1067
        • MacDonald J.R.
        • Ziman R.
        • Yuen R.K.
        • et al.
        The Database of Genomic Variants: a curated collection of structural variation in the human genome.
        Nucleic Acids Res. 2014; 42 (Available at:): D986-D992
        • Lappalainen I.
        • Lopez J.
        • Skipper L.
        • et al.
        DbVar and DGVa: public archives for genomic structural variation.
        Nucleic Acids Res. 2013; 41 (Available at:): 936-941
        • McKay V.
        • Efron D.
        • Palmer E.E.
        • et al.
        Current use of chromosomal microarray by Australian paediatricians and implications for the implementation of next generation sequencing.
        J Paediatr Child Health. 2017; 53 (Available at:): 650-656
        • Ross L.F.
        • Saal H.M.
        • David K.L.
        • et al.
        Technical report: ethical and policy issues in genetic testing and screening of children.
        Genet Med. 2013; 15 (Available at:): 234-245
        • Bush L.W.
        • Bartoshesky L.E.
        • David K.L.
        • et al.
        Pediatric clinical exome/genome sequencing and the engagement process: encouraging active conversation with the older child and adolescent: points to consider - a statement of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2018; 20 (Available at:): 692-694
        • Rosenfeld J.A.
        • Patel A.
        Chromosomal microarrays: understanding genetics of neurodevelopmental disorders and congenital anomalies.
        J Pediatr Genet. 2017; 6 (Available at:): 42-50
        • Marques Matos C.
        • Alonso I.
        • Leão M.
        Diagnostic yield of next-generation sequencing applied to neurological disorders.
        J Clin Neurosci. 2019; 67 (Available at:): 14-18
        • Nolan D.
        • Carlson M.
        Whole exome sequencing in pediatric neurology patients: clinical implications and estimated cost analysis.
        J Child Neurol. 2016; 31 (Available at:): 887-894
        • Kaye C.
        • Bodurtha J.
        • Edick M.
        • et al.
        Regional models of genetic services in the United States.
        Genet Med. 2019; 22 (Available at:): 381-388
        • Kiely B.
        • Vettam S.
        • Adesman A.
        Utilization of genetic testing among children with developmental disabilities in the United States.
        Appl Clin Genet. 2016; 9 (Available at:): 93-100
        • Zhao S.
        • Chen W.J.
        • Dhar S.U.
        • et al.
        Genetic testing experiences among parents of children with autism spectrum disorder in the United States.
        J Autism Dev Disord. 2019; 49 (Available at:): 4821-4833
        • Jez S.
        • Martin M.
        • South S.
        • et al.
        Variants of unknown significance on chromosomal microarray analysis: parental perspectives.
        J Community Genet. 2015; 6 (Available at:): 343-349
        • Nellåker C.
        • Alkuraya F.S.
        • Baynam G.
        • et al.
        Minerva consortium. enabling global clinical collaborations on identifiable patient data: the minerva initiative.
        Front Genet. 2019; 10 (Available at:): 611
        • Perry M.S.
        New and emerging medications for treatment of pediatric epilepsy.
        Pediatr Neurol. 2019; ([pii:S0887-8994(19)30923-3]. Available at:)https://doi.org/10.1016/j.pediatrneurol.2019.11.008