Advertisement
Review Article| Volume 40, ISSUE 3, P257-270, September 2020

Proteopathic Seed Amplification Assays for Neurodegenerative Disorders

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Caughey B.
        • Lansbury P.T.
        Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders.
        Annu Rev Neurosci. 2003; 26: 267-298
        • Chiti F.
        • Dobson C.M.
        Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade.
        Annu Rev Biochem. 2017; 109: 27-68
        • Silveira J.R.
        • Raymond G.J.
        • Hughson A.G.
        • et al.
        The most infectious prion protein particles.
        Nature. 2005; 437: 257-261
        • Diaz-Villanueva J.F.
        • Diaz-Molina R.
        • Garcia-Gonzalez V.
        Protein folding and mechanisms of proteostasis.
        Int J Mol Sci. 2015; 16: 17193-17230
        • Powers E.T.
        • Morimoto R.I.
        • Dillin A.
        • et al.
        Biological and chemical approaches to diseases of proteostasis deficiency.
        Annu Rev Biochem. 2009; 78: 959-991
        • Kraus A.
        • Saijo E.
        • Metrick M.A.I.
        • et al.
        Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease.
        Acta Neuropathol. 2019; 137: 585-598
        • Saborio G.P.
        • Permanne B.
        • Soto C.
        Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding.
        Nature. 2001; 411: 810-813
        • Atarashi R.
        • Moore R.A.
        • Sim V.L.
        • et al.
        Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein.
        Nature Meth. 2007; 4: 645-650
        • Colby D.W.
        • Zhang Q.
        • Wang S.
        • et al.
        Prion detection by an amyloid seeding assay.
        Proc Natl Acad Sci U S A. 2007; 104: 20914-20919
        • Atarashi R.
        • Satoh K.
        • Sano K.
        • et al.
        Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion.
        Nature Med. 2011; 17: 175-178
        • Wilham J.M.
        • Orrú C.D.
        • Bessen R.A.
        • et al.
        Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays.
        PLoS Path. 2010; 6: e1001217
        • Atarashi R.
        • Wilham J.M.
        • Christensen L.
        • et al.
        Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking.
        Nature Meth. 2008; 5: 211-212
        • Barria M.A.
        • Gonzalez-Romero D.
        • Soto C.
        Cyclic amplification of prion protein misfolding.
        Methods Mol Biol. 2012; 849: 199-212
        • Caughey B.
        • Orru C.D.
        • Groveman B.R.
        • et al.
        Amplified detection of prions and other amyloids by RT-QuIC in diagnostics and the evaluation of therapeutics and disinfectants.
        Prog Mol Biol Transl Sci. 2017; 150: 375-388
        • Green A.J.E.
        • Zanusso G.
        Prion protein amplification techniques.
        Handb Clin Neurol. 2018; 153: 357-370
        • Jarrett J.T.
        • Lansbury Jr., P.T.
        Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in alzheimer's disease and scrapie?.
        Cell. 1993; 73: 1055-1058
        • Saa P.
        • Castilla J.
        • Soto C.
        Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification.
        J Biol Chem. 2006; 281: 35245-35252
        • Orru C.D.
        • Wilham J.M.
        • Raymond L.D.
        • et al.
        Prion disease blood test using immunoprecipitation and improved quaking-induced conversion.
        Mbio. 2011; 2: e00078-11
        • Zanusso G.
        • Monaco S.
        • Pocchiari M.
        • et al.
        Advanced tests for early and accurate diagnosis of Creutzfeldt-Jakob disease.
        Nat Rev Neurol. 2016; 12: 325-333
        • Schmitz M.
        • Cramm M.
        • Llorens F.
        • et al.
        The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases.
        Nature Protoc. 2016; 11: 2233-2242
        • Bongianni M.
        • Orrù C.D.
        • Groveman B.R.
        • et al.
        Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples.
        JAMA Neurol. 2017; 74: 1-8
        • Kocisko D.A.
        • Come J.H.
        • Priola S.A.
        • et al.
        Cell-free formation of protease-resistant prion protein.
        Nature. 1994; 370: 471-474
        • Kocisko D.A.
        • Priola S.A.
        • Raymond G.J.
        • et al.
        Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier.
        Proc Natl Acad Sci U S A. 1995; 92: 3923-3927
        • Bessen R.A.
        • Kocisko D.A.
        • Raymond G.J.
        • et al.
        Nongenetic propagation of strain-specific phenotypes of scrapie prion protein.
        Nature. 1995; 375: 698-700
        • Bossers A.
        • Belt P.B.G.M.
        • Raymond G.J.
        • et al.
        Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms.
        Proc Natl Acad Sci USA. 1997; 94: 4931-4936
        • Raymond G.J.
        • Hope J.
        • Kocisko D.A.
        • et al.
        Molecular assessment of the transmissibilities of BSE and scrapie to humans.
        Nature. 1997; 388: 285-288
        • Raymond G.J.
        • Bossers A.
        • Raymond L.D.
        • et al.
        Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease.
        EMBO J. 2000; 19: 4425-4430
        • Castilla J.
        • Saa P.
        • Hetz C.
        • et al.
        In vitro generation of infectious scrapie prions.
        Cell. 2005; 121: 195-206
        • Castilla J.
        • Morales R.
        • Saa P.
        • et al.
        Cell-free propagation of prion strains.
        EMBO J. 2008; 27: 2557-2566
        • Castilla J.
        • Saa P.
        • Soto C.
        Detection of prions in blood.
        Nature Med. 2005; 11: 982-985
        • Soto C.
        • Anderes L.
        • Suardi S.
        • et al.
        Pre-symptomatic detection of prions by cyclic amplification of protein misfolding.
        FEBS Lett. 2005; 579: 638-642
        • Gonzalez-Romero D.
        • Barria M.A.
        • Leon P.
        • et al.
        Detection of infectious prions in urine.
        FEBS Lett. 2008; 582: 3161-3166
        • Moda F.
        • Gambetti P.
        • Notari S.
        • et al.
        Prions in the urine of patients with variant Creutzfeldt-Jakob disease.
        N Engl J Med. 2014; 371: 530-539
        • Orru C.D.
        • Groveman B.R.
        • Raymond L.D.
        • et al.
        Bank vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains.
        PLoS Path. 2015; 11: e1004983
        • Caughey B.
        • Orru C.D.
        • Groveman B.R.
        • et al.
        Detection and diagnosis of prion diseases using RT-QuIC: an update.
        in: Prions diseases. Vol. 129. Springer Science+Business Media, Basel (Switzerland)2017: 173-181
        • Haley N.J.
        • Richt J.A.
        • Davenport K.A.
        • et al.
        Design, implementation, and interpretation of amplification studies for prion detection.
        Prion. 2018; 12: 73-82
        • Orrú C.D.
        • Wilham J.M.
        • Hughson A.G.
        • et al.
        Human variant Creutzfeldt-Jakob disease and sheep scrapie PrP(res) detection using seeded conversion of recombinant prion protein.
        Protein Eng Des Sel. 2009; 22: 515-521
        • Wang Z.
        • Manca M.
        • Foutz A.
        • et al.
        Early preclinical detection of prions in the skin of prion-infected animals.
        Nature Commun. 2019; 10: 247
        • McGuire L.I.
        • Peden A.H.
        • Orru C.D.
        • et al.
        RT-QuIC analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease.
        Ann Neurol. 2012; 72: 278-285
        • Franceschini A.
        • Baiardi S.
        • Hughson A.G.
        • et al.
        High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions.
        Sci Rep. 2017; 7: 10655
        • Orru C.D.
        • Groveman B.R.
        • Hughson A.G.
        • et al.
        Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid.
        MBio. 2015; 6 ([pii:e02451-14])
        • Henderson D.M.
        • Denkers N.D.
        • Hoover C.E.
        • et al.
        Longitudinal detection of prion shedding in saliva and urine by chronic wasting disease-infected deer by real-time quaking-induced conversion.
        J Virol. 2015; 89: 9338-9347
        • Orru C.D.
        • Yuan J.
        • Appleby B.S.
        • et al.
        Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease.
        Sci Transl Med. 2017; 9 ([pii:eaam7785])
        • Cheng Y.C.
        • Hannaoui S.
        • John T.R.
        • et al.
        Real-time quaking-induced conversion assay for detection of CWD prions in fecal material.
        J Vis Exp. 2017; 127
        • Davenport K.A.
        • Mosher B.A.
        • Brost B.M.
        • et al.
        Assessment of chronic wasting disease prion shedding in deer saliva with occupancy modeling.
        J Clin Microbiol. 2018; 56 ([pii:e01243-17])
        • Groveman B.R.
        • Orru C.D.
        • Hughson A.G.
        • et al.
        Extended and direct evaluation of RT-QuIC assays for Creutzfeldt-Jakob disease diagnosis.
        Ann Clin Transl Neurol. 2017; 4: 139-144
        • Foutz A.
        • Appleby B.S.
        • Hamlin C.
        • et al.
        Diagnostic and prognostic value of human prion detection in cerebrospinal fluid.
        Ann Neurol. 2017; 81: 79-92
        • Centers for Disease Control and Prevention
        CDC’s diagnostic criteria for Creutzfeldt-Jakob disease (CJD).
        (Available at:)
      1. National CJD research and Surveillance Unit. Sporadic CJD diagnostic criteria.
        (Available at:)
        • Orru C.D.
        • Soldau K.
        • Cordano C.
        • et al.
        Prion seeds distribute throughout the eyes of sporadic creutzfeldt-jakob disease patients.
        MBio. 2018; 9
      2. Raymond, B. Race, C.D. Orru, et al., Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC products, Ann Clin Transl Neurol (in press).

        • Saijo E.
        • Groveman B.R.
        • Kraus A.
        • et al.
        Ultrasensitive RT-QuIC seed amplification assays for disease-associated tau, alpha-synuclein, and prion aggregates.
        Methods Mol Biol. 2019; 1873: 19-37
        • Klohn P.C.
        • Stoltze L.
        • Flechsig E.
        • et al.
        A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions.
        Proc Natl Acad Sci U S A. 2003; 100: 11666-11671
        • Mahal S.P.
        • Demczyk C.A.
        • Smith Jr., E.W.
        • et al.
        Assaying prions in cell culture: the standard scrapie cell assay (SSCA) and the scrapie cell assay in end point format (SCEPA).
        Methods Mol Biol. 2008; 459: 49-68
        • Schmidt C.
        • Fizet J.
        • Properzi F.
        • et al.
        A systematic investigation of production of synthetic prions from recombinant prion protein.
        Open Biol. 2015; 5: 150165
        • van der Merwe J.
        • Aiken J.
        • Westaway D.
        • et al.
        The standard scrapie cell assay: development, utility and prospects.
        Viruses. 2015; 7: 180-198
        • Sarell C.J.
        • Quarterman E.
        • Yip D.C.
        • et al.
        Soluble Abeta aggregates can inhibit prion propagation.
        Open Biol. 2017; 7
        • Fairfoul G.
        • McGuire L.I.
        • Pal S.
        • et al.
        Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies.
        Ann Clin Transl Neurol. 2016; 3: 812-818
        • Sano K.
        • Atarashi R.
        • Satoh K.
        • et al.
        Prion-like seeding of misfolded alpha-synuclein in the brains of dementia with lewy body patients in RT-QUIC.
        Mol Neurobiol. 2018; 55: 3916-3930
        • Groveman B.R.
        • Orru C.D.
        • Hughson A.G.
        • et al.
        Rapid and ultra-sensitive quantitation of disease-associated alpha-synuclein seeds in brain and cerebrospinal fluid by alphaSyn RT-QuIC.
        Acta Neuropathol Commun. 2018; 6: 7
        • Candelise N.
        • Schmitz M.
        • Llorens F.
        • et al.
        Seeding variability of different alpha synuclein strains in synucleinopathies.
        Ann Neurol. 2019; 85: 691-703
        • Manne S.
        • Kondru N.
        • Jin H.
        • et al.
        alpha-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson's disease patients.
        Mov Disord. 2020; 35: 268-278
        • Bongianni M.
        • Ladogana A.
        • Capaldi S.
        • et al.
        alpha-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies.
        Ann Clin Transl Neurol. 2019; 6: 2120-2126
        • Shahnawaz M.
        • Tokuda T.
        • Waragai M.
        • et al.
        Development of a biochemical diagnosis of Parkinson disease by detection of alpha-synuclein misfolded aggregates in cerebrospinal fluid.
        JAMA Neurol. 2017; 74: 163-172
        • Kang U.J.
        • Boehme A.K.
        • Fairfoul G.
        • et al.
        Comparative study of cerebrospinal fluid alpha-synuclein seeding aggregation assays for diagnosis of Parkinson's disease.
        Mov Disord. 2019; 34: 536-544
      3. Rossi M, Candelise N, Baiardi S, et al., Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body associated synucleinopathies. Acta Neuropathol 2020. doi:10.1007/s00401-020-02160-8. [Online ahead of print].

        • De Luca C.M.G.
        • Elia A.E.
        • Portaleone S.M.
        • et al.
        Efficient RT-QuIC seeding activity for alpha-synuclein in olfactory mucosa samples of patients with Parkinson's disease and multiple system atrophy.
        Transl Neurodegener. 2019; 8: 24
        • Shahnawaz M.
        • Mukherjee A.
        • Pritzkow S.
        • et al.
        Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy.
        Nature. 2020; 578: 273-277
        • Woerman A.L.
        • Stohr J.
        • Aoyagi A.
        • et al.
        Propagation of prions causing synucleinopathies in cultured cells.
        Proc Natl Acad Sci U S A. 2015; 112: E4949-E4958
        • Prusiner S.B.
        • Woerman A.L.
        • Mordes D.A.
        • et al.
        Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism.
        Proc Natl Acad Sci U S A. 2015; 112: E5308-E5317
        • Kakuda K.
        • Ikenaka K.
        • Araki K.
        • et al.
        Ultrasonication-based rapid amplification of alpha-synuclein aggregates in cerebrospinal fluid.
        Sci Rep. 2019; 9: 6001
        • Fitzpatrick A.W.P.
        • Falcon B.
        • He S.
        • et al.
        Cryo-EM structures of tau filaments from Alzheimer's disease.
        Nature. 2017; 547: 185-190
        • Falcon B.
        • Zivanov J.
        • Zhang W.
        • et al.
        Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules.
        Nature. 2019; 568: 420-423
        • Arai T.
        • Ikeda K.
        • Akiyama H.
        • et al.
        Different immunoreactivities of the microtubule-binding region of tau and its molecular basis in brains from patients with Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration.
        Acta Neuropathol. 2003; 105: 489-498
        • Irwin D.J.
        • Brettschneider J.
        • McMillan C.T.
        • et al.
        Deep clinical and neuropathological phenotyping of Pick disease.
        Ann Neurol. 2016; 79: 272-287
        • Falcon B.
        • Zhang W.
        • Murzin A.G.
        • et al.
        Structures of filaments from Pick's disease reveal a novel tau protein fold.
        Nature. 2018; 561: 137-140
        • Zhang K.
        • Tarutani A.
        • Newell K.L.
        • et al.
        Novel tau filament fold in corticobasal degeneration, a four-repeat tauopathy.
        bioRxiv. 2020; 580: 283-287
        • Dinkel P.D.
        • Siddiqua A.
        • Huynh H.
        • et al.
        Variations in filament conformation dictate seeding barrier between three- and four-repeat tau.
        Biochemistry. 2011; 50: 4330-4336
        • Meyer V.
        • Dinkel P.D.
        • Rickman Hager E.
        • et al.
        Amplification of Tau fibrils from minute quantities of seeds.
        Biochem. 2014; 53: 5804-5809
        • Saijo E.
        • Ghetti B.
        • Zanusso G.
        • et al.
        Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid.
        Acta Neuropathol. 2017; 133: 751-765
        • Saijo E.
        • Metrick 2nd, M.A.
        • Koga S.
        • et al.
        4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration.
        Acta Neuropathol. 2020; 139: 63-77
        • Metrick 2nd, M.A.
        • do Carmo Ferreira N.
        • Saijo E.
        • et al.
        Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons.
        Proc Natl Acad Sci U S A. 2019; 116: 23029-23039
        • Metrick M.A.I.
        • Ferreira N.C.
        • Saijo E.
        • et al.
        A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases.
        Acta Neuropathol Commun. 2020; 8: 22
        • Holmes B.B.
        • Furman J.L.
        • Mahan T.E.
        • et al.
        Proteopathic tau seeding predicts tauopathy in vivo.
        Proc Natl Acad Sci U S A. 2014; 111: E4376-E4385
        • Woerman A.L.
        • Aoyagi A.
        • Patel S.
        • et al.
        Tau prions from Alzheimer's disease and chronic traumatic encephalopathy patients propagate in cultured cells.
        Proc Natl Acad Sci U S A. 2016; 113: E8187-E8196
        • Guo J.L.
        • Lee V.M.
        Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles.
        J Biol Chem. 2011; 286: 15317-15331
        • Kaufman S.K.
        • Sanders D.W.
        • Thomas T.L.
        • et al.
        Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo.
        Neuron. 2016; 92: 796-812
        • Montine T.J.
        • Phelps C.H.
        • Beach T.G.
        • et al.
        National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach.
        Acta Neuropathol. 2012; 123: 1-11
        • Reitz C.
        • Mayeux R.
        Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers.
        Biochem Pharmacol. 2014; 88: 640-651
        • Du D.
        • Murray A.N.
        • Cohen E.
        • et al.
        A kinetic aggregation assay allowing selective and sensitive amyloid-beta quantification in cells and tissues.
        Biochem. 2011; 50: 1607-1617
        • Salvadores N.
        • Shahnawaz M.
        • Scarpini E.
        • et al.
        Detection of misfolded Abeta oligomers for sensitive biochemical diagnosis of Alzheimer's disease.
        Cell Rep. 2014; 7: 261-268
        • Gupta S.
        • Jie S.
        • Colby D.W.
        Protein misfolding detected early in pathogenesis of transgenic mouse model of Huntington disease using amyloid seeding assay.
        J Biol Chem. 2012; 287: 9982-9989