Advertisement
Review Article| Volume 40, ISSUE 2, P205-219, June 2020

Therapeutic Gene Editing with CRISPR

A Laboratory Medicine Perspective
  • Elan Hahn
    Correspondence
    Corresponding author.
    Affiliations
    Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6231, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
    Search for articles by this author
  • Matthew Hiemenz
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California 90027, USA

    Department of Pathology, Keck School of Medicine of USC, Los Angeles, California 90033, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mardis E.R.
        A decade’s perspective on DNA sequencing technology.
        Nature. 2011; 470: 198-203
        • Gonzaludo N.
        • Belmont J.W.
        • Gainullin V.G.
        • et al.
        Estimating the burden and economic impact of pediatric genetic disease.
        Genet Med. 2019; 21: 1781-1789
        • Smith H.O.
        • Wilcox K.W.
        A restriction enzyme from Hemophilus influenzae. I. Purification and general properties.
        J Mol Biol. 1970; 51: 379-391
        • Kelly T.J.
        • Smith H.O.
        A restriction enzyme from Hemophilus influenzae. II.
        J Mol Biol. 1970; 51: 393-409
        • Capecchi M.R.
        Altering the genome by homologous recombination.
        Science. 1989; 244: 1288-1292
        • Lin F.L.
        • Sperle K.
        • Sternberg N.
        Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences.
        Proc Natl Acad Sci U S A. 1985; 82: 1391-1395
        • Rudin N.
        • Sugarman E.
        • Haber J.E.
        Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae.
        Genetics. 1989; 122: 519-534
        • Bibikova M.
        • Golic M.
        • Golic K.G.
        • et al.
        Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases.
        Genetics. 2002; 161: 1169-1175
        • Jeggo P.A.
        DNA breakage and repair.
        Adv Genet. 1998; 38: 185-218
        • Klug A.
        • Rhodes D.
        Zinc fingers: a novel protein fold for nucleic acid recognition.
        Cold Spring Harb Symp Quant Biol. 1987; 52: 473-482
        • Miller J.C.
        • Holmes M.C.
        • Wang J.
        • et al.
        An improved zinc-finger nuclease architecture for highly specific genome editing.
        Nat Biotechnol. 2007; 25: 778-785
        • Porteus M.H.
        • Baltimore D.
        Chimeric nucleases stimulate gene targeting in human cells.
        Science. 2003; 300: 763
        • Boch J.
        • Scholze H.
        • Schornack S.
        • et al.
        Breaking the code of DNA binding specificity of TAL-type III effectors.
        Science. 2009; 326: 1509-1512
        • Li T.
        • Huang S.
        • Zhao X.
        • et al.
        Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes.
        Nucleic Acids Res. 2011; 39: 6315-6325
        • Ishino Y.
        • Shinagawa H.
        • Makino K.
        • et al.
        Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.
        J Bacteriol. 1987; 169: 5429-5433
        • Wiedenheft B.
        • Sternberg S.H.
        • Doudna J.A.
        RNA-guided genetic silencing systems in bacteria and archaea.
        Nature. 2012; 482: 331-338
        • Sapranauskas R.
        • Gasiunas G.
        • Fremaux C.
        • et al.
        The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli.
        Nucleic Acids Res. 2011; 39: 9275-9282
        • Mojica F.J.M.
        • Díez-Villaseñor C.
        • García-Martínez J.
        • et al.
        Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.
        J Mol Evol. 2005; 60: 174-182
        • Brouns S.J.J.
        • Jore M.M.
        • Lundgren M.
        • et al.
        Small CRISPR RNAs guide antiviral defense in prokaryotes.
        Science. 2008; 321: 960-964
        • Deveau H.
        • Barrangou R.
        • Garneau J.E.
        • et al.
        Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.
        J Bacteriol. 2008; 190: 1390-1400
        • Jinek M.
        • Chylinski K.
        • Fonfara I.
        • et al.
        A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
        Science. 2012; 337: 816-821
        • Cong L.
        • Ran F.A.
        • Cox D.
        • et al.
        Multiplex genome engineering using CRISPR/Cas systems.
        Science. 2013; 339: 819-823
        • Mali P.
        • Yang L.
        • Esvelt K.M.
        • et al.
        RNA-guided human genome engineering via Cas9.
        Science. 2013; 339: 823-826
        • Komor A.C.
        • Kim Y.B.
        • Packer M.S.
        • et al.
        Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
        Nature. 2016; 533: 420-424
        • Porteus M.H.
        A new class of medicines through DNA editing.
        N Engl J Med. 2019; 380: 947-959
        • Allen F.
        • Crepaldi L.
        • Alsinet C.
        • et al.
        Predicting the mutations generated by repair of Cas9-induced double-strand breaks.
        Nat Biotechnol. 2019; 37: 64-72
        • Cox D.B.T.
        • Gootenberg J.S.
        • Abudayyeh O.O.
        • et al.
        RNA editing with CRISPR-Cas13.
        Science. 2017; 358: 1019-1027
        • Kaneko T.
        • Sakuma T.
        • Yamamoto T.
        • et al.
        Simple knockout by electroporation of engineered endonucleases into intact rat embryos.
        Sci Rep. 2014; 4: 6382
        • Tebas P.
        • Stein D.
        • Tang W.W.
        • et al.
        Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
        N Engl J Med. 2014; 370: 901-910
        • DiGiusto D.L.
        • Cannon P.M.
        • Holmes M.C.
        • et al.
        Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells.
        Mol Ther Methods Clin Dev. 2016; 3: 16067
        • Qasim W.
        • Zhan H.
        • Samarasinghe S.
        • et al.
        Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells.
        Sci Transl Med. 2017; 9https://doi.org/10.1126/scitranslmed.aaj2013
        • Poirot L.
        • Philip B.
        • Schiffer-Mannioui C.
        • et al.
        Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies.
        Cancer Res. 2015; 75: 3853-3864
        • Jing W.
        • Zhang X.
        • Sun W.
        • et al.
        CRISPR/CAS9-Mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells.
        Biomed Res Int. 2015; 2015: 326042
        • Hacein-Bey Abina S.
        • Gaspar H.B.
        • Blondeau J.
        • et al.
        Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome.
        JAMA. 2015; 313: 1550-1563
        • Kochenderfer J.N.
        • Rosenberg S.A.
        Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.
        Nat Rev Clin Oncol. 2013; 10: 267-276
        • June C.H.
        • O’Connor R.S.
        • Kawalekar O.U.
        • et al.
        CAR T cell immunotherapy for human cancer.
        Science. 2018; 359: 1361-1365
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Eyquem J.
        • Mansilla-Soto J.
        • Giavridis T.
        • et al.
        Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection.
        Nature. 2017; 543: 113-117
        • Roth T.L.
        • Puig-Saus C.
        • Yu R.
        • et al.
        Reprogramming human T cell function and specificity with non-viral genome targeting.
        Nature. 2018; 559: 405-409
        • Hoban M.D.
        • Orkin S.H.
        • Bauer D.E.
        Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.
        Blood. 2016; 127: 839-848
        • Makani J.
        • Ofori-Acquah S.F.
        • Nnodu O.
        • et al.
        Sickle cell disease: new opportunities and challenges in Africa.
        ScientificWorldJournal. 2013; 2013: 193252
        • Huang X.
        • Wang Y.
        • Yan W.
        • et al.
        Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation.
        Stem Cells. 2015; 33: 1470-1479
        • Canver M.C.
        • Smith E.C.
        • Sher F.
        • et al.
        BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.
        Nature. 2015; 527: 192-197
        • Hossain M.A.
        • Bungert J.
        Genome editing for sickle cell disease: a little BCL11A goes a long way.
        Mol Ther. 2017; 25: 561-562
        • Çiçek Y.A.
        • Luther D.C.
        • Kretzmann J.A.
        • et al.
        Advances in CRISPR/Cas9 technology for in vivo translation.
        Biol Pharm Bull. 2019; 42: 304-311
        • Miller J.B.
        • Zhang S.
        • Kos P.
        • et al.
        Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle Co-delivery of Cas9 mRNA and sgRNA.
        Angew Chem Int Ed. 2017; 56: 1059-1063
        • Zetsche B.
        • Volz S.E.
        • Zhang F.
        A split-Cas9 architecture for inducible genome editing and transcription modulation.
        Nat Biotechnol. 2015; 33: 139-142
        • Zhang X.-H.
        • Tee L.Y.
        • Wang X.-G.
        • et al.
        Off-target effects in CRISPR/Cas9-mediated genome engineering.
        Mol Ther Nucleic Acids. 2015; 4: e264
        • Bessis N.
        • GarciaCozar F.J.
        • Boissier M.-C.
        Immune responses to gene therapy vectors: influence on vector function and effector mechanisms.
        Gene Ther. 2004; 11: S10-S17
        • Samulski R.J.
        • Muzyczka N.
        AAV-mediated gene therapy for research and therapeutic purposes.
        Annu Rev Virol. 2014; 1: 427-451
        • Lee C.S.
        • Bishop E.S.
        • Zhang R.
        • et al.
        Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine.
        Genes Dis. 2017; 4: 43-63
        • Chen X.
        • Gonçalves M.A.F.V.
        Engineered viruses as genome editing devices.
        Mol Ther. 2016; 24: 447-457
        • Chu V.T.
        • Weber T.
        • Wefers B.
        • et al.
        Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.
        Nat Biotechnol. 2015; 33: 543-548
        • Linden R.M.
        • Ward P.
        • Giraud C.
        • et al.
        Site-specific integration by adeno-associated virus.
        Proc Natl Acad Sci U S A. 1996; 93: 11288-11294
        • Yang Y.
        • Wang L.
        • Bell P.
        • et al.
        A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.
        Nat Biotechnol. 2016; 34: 334-338
        • Pack D.W.
        • Hoffman A.S.
        • Pun S.
        • et al.
        Design and development of polymers for gene delivery.
        Nat Rev Drug Discov. 2005; 4: 581-593
        • Baum C.
        • Kustikova O.
        • Modlich U.
        • et al.
        Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors.
        Hum Gene Ther. 2006; 17: 253-263
        • Zuris J.A.
        • Thompson D.B.
        • Shu Y.
        • et al.
        Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.
        Nat Biotechnol. 2015; 33: 73-80
        • Bakondi B.
        • Lv W.
        • Lu B.
        • et al.
        In Vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa.
        Mol Ther. 2016; 24: 556-563
        • Latella M.C.
        • Di Salvo M.T.
        • Cocchiarella F.
        • et al.
        In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina.
        Mol Ther Nucleic Acids. 2016; 5: e389
        • Sendra L.
        • Herrero M.J.
        • Aliño S.F.
        Translational advances of hydrofection by hydrodynamic injection.
        Genes. 2018; 9https://doi.org/10.3390/genes9030136
        • Yin H.
        • Xue W.
        • Chen S.
        • et al.
        Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.
        Nat Biotechnol. 2014; 32: 551-553
        • Semple S.C.
        • Akinc A.
        • Chen J.
        • et al.
        Rational design of cationic lipids for siRNA delivery.
        Nat Biotechnol. 2010; 28: 172-176
        • Sun Q.
        • Kang Z.
        • Xue L.
        • et al.
        A collaborative assembly strategy for tumor-targeted siRNA delivery.
        J Am Chem Soc. 2015; 137: 6000-6010
        • Li L.
        • Song L.
        • Liu X.
        • et al.
        Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice.
        ACS Nano. 2017; 11: 95-111
        • Lee K.
        • Conboy M.
        • Park H.M.
        • et al.
        Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair.
        Nat Biomed Eng. 2017; 1: 889-901
        • Liu J.
        • Peng Q.
        Protein-gold nanoparticle interactions and their possible impact on biomedical applications.
        Acta Biomater. 2017; 55: 13-27
        • Lino C.A.
        • Harper J.C.
        • Carney J.P.
        • et al.
        Delivering CRISPR: a review of the challenges and approaches.
        Drug Deliv. 2018; 25: 1234-1257
        • Ho B.X.
        • Loh S.J.H.
        • Chan W.K.
        • et al.
        In vivo genome editing as a therapeutic approach.
        Int J Mol Sci. 2018; 19https://doi.org/10.3390/ijms19092721
        • Yu W.
        • Wu Z.
        In Vivo applications of CRISPR-based genome editing in the retina.
        Front Cell Dev Biol. 2018; 6: 53
        • Li P.
        • Kleinstiver B.P.
        • Leon M.Y.
        • et al.
        Allele-specific CRISPR-Cas9 genome editing of the single-base P23H mutation for rhodopsin-associated dominant retinitis pigmentosa.
        CRISPR J. 2018; 1: 55-64
        • Hoffman E.P.
        • Brown R.H.
        • Kunkel L.M.
        Dystrophin: the protein product of the Duchenne muscular dystrophy locus.
        Cell. 1987; 51: 919-928
        • Thanh L.T.
        • Nguyen T.M.
        • Helliwell T.R.
        • et al.
        Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin.
        Am J Hum Genet. 1995; 56: 725-731
        • Tabebordbar M.
        • Zhu K.
        • Cheng J.K.W.
        • et al.
        In vivo gene editing in dystrophic mouse muscle and muscle stem cells.
        Science. 2016; 351: 407-411
        • Long C.
        • Amoasii L.
        • Mireault A.A.
        • et al.
        Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.
        Science. 2016; 351: 400-403
        • Nelson C.E.
        • Hakim C.H.
        • Ousterout D.G.
        • et al.
        In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.
        Science. 2016; 351: 403-407
        • Bengtsson N.E.
        • Hall J.K.
        • Odom G.L.
        • et al.
        Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy.
        Nat Commun. 2017; 8: 14454
        • Li D.
        • Zhou H.
        • Zeng X.
        Battling CRISPR-Cas9 off-target genome editing.
        Cell Biol Toxicol. 2019; 35: 403-406
        • Fu Y.
        • Foden J.A.
        • Khayter C.
        • et al.
        High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
        Nat Biotechnol. 2013; 31: 822-826
        • Hsu P.D.
        • Scott D.A.
        • Weinstein J.A.
        • et al.
        DNA targeting specificity of RNA-guided Cas9 nucleases.
        Nat Biotechnol. 2013; 31: 827-832
        • Zhou H.
        • Zhou M.
        • Li D.
        • et al.
        Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
        BMC Genomics. 2017; 18: 826
        • Pattanayak V.
        • Lin S.
        • Guilinger J.P.
        • et al.
        High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
        Nat Biotechnol. 2013; 31: 839-843
        • Tsai S.Q.
        • Zheng Z.
        • Nguyen N.T.
        • et al.
        GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
        Nat Biotechnol. 2015; 33: 187-197
        • Kim S.
        • Kim D.
        • Cho S.W.
        • et al.
        Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins.
        Genome Res. 2014; 24: 1012-1019
        • Davis K.M.
        • Pattanayak V.
        • Thompson D.B.
        • et al.
        Small molecule-triggered Cas9 protein with improved genome-editing specificity.
        Nat Chem Biol. 2015; 11: 316-318
        • Slaymaker I.M.
        • Gao L.
        • Zetsche B.
        • et al.
        Rationally engineered Cas9 nucleases with improved specificity.
        Science. 2016; 351: 84-88
        • Kleinstiver B.P.
        • Pattanayak V.
        • Prew M.S.
        • et al.
        High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
        Nature. 2016; 529: 490-495
        • Ran F.A.
        • Hsu P.D.
        • Lin C.-Y.
        • et al.
        Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
        Cell. 2013; 154: 1380-1389
        • Cho S.W.
        • Kim S.
        • Kim Y.
        • et al.
        Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
        Genome Res. 2014; 24: 132-141
        • Fu Y.
        • Sander J.D.
        • Reyon D.
        • et al.
        Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
        Nat Biotechnol. 2014; 32: 279-284
        • Kocak D.D.
        • Josephs E.A.
        • Bhandarkar V.
        • et al.
        Increasing the specificity of CRISPR systems with engineered RNA secondary structures.
        Nat Biotechnol. 2019; 37: 657-666
        • Ryan D.E.
        • Taussig D.
        • Steinfeld I.
        • et al.
        Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.
        Nucleic Acids Res. 2018; 46: 792-803
        • Veres A.
        • Gosis B.S.
        • Ding Q.
        • et al.
        Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing.
        Cell Stem Cell. 2014; 15: 27-30
        • Smith C.
        • Gore A.
        • Yan W.
        • et al.
        Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs.
        Cell Stem Cell. 2014; 15: 12-13
        • Scott D.A.
        • Zhang F.
        Implications of human genetic variation in CRISPR-based therapeutic genome editing.
        Nat Med. 2017; 23: 1095-1101
        • Tsai S.Q.
        • Topkar V.V.
        • Joung J.K.
        • et al.
        Open-source guideseq software for analysis of GUIDE-seq data.
        Nat Biotechnol. 2016; 34: 483
        • Lazzarotto C.R.
        • Nguyen N.T.
        • Tang X.
        • et al.
        Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq.
        Nat Protoc. 2018; 13: 2615-2642
        • Tsai S.Q.
        • Nguyen N.T.
        • Malagon-Lopez J.
        • et al.
        CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets.
        Nat Methods. 2017; 14: 607-614
        • Wienert B.
        • Wyman S.K.
        • Richardson C.D.
        • et al.
        Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq.
        Science. 2019; 364: 286-289
        • Lamarche B.J.
        • Orazio N.I.
        • Weitzman M.D.
        The MRN complex in double-strand break repair and telomere maintenance.
        FEBS Lett. 2010; 584: 3682-3695
        • Kosicki M.
        • Tomberg K.
        • Bradley A.
        Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements.
        Nat Biotechnol. 2018; 36: 765-771
        • Akcakaya P.
        • Bobbin M.L.
        • Guo J.A.
        • et al.
        In vivo CRISPR editing with no detectable genome-wide off-target mutations.
        Nature. 2018; 561: 416-419
        • Kim J.
        • Hu C.
        • Moufawad El Achkar C.
        • et al.
        Patient-customized oligonucleotide therapy for a rare genetic disease.
        N Engl J Med. 2019; 381: 1644-1652
        • Aiello C.
        • Terracciano A.
        • Simonati A.
        • et al.
        Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile neuronal ceroid lipofuscinosis.
        Hum Mutat. 2009; 30: E530-E540
        • Finkel R.S.
        • Chiriboga C.A.
        • Vajsar J.
        • et al.
        Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study.
        Lancet. 2016; 388: 3017-3026
      1. Research C for DE and. Expanded access to investigational drugs for treatment use - questions and answers. U.S. Food and Drug Administration.
        (Available at:) (Accessed November 29, 2019)
      2. Research C for BE and. Expedited programs for regenerative medicine therapies for serious conditions. U.S. Food and Drug Administration.
        (Available at:) (Accessed November 29, 2019)
      3. Research C for BE and. Regulatory considerations for human cells, tissues, and cellular and tissue-based products: minimal manipulation and homologous use. U.S. Food and Drug Administration.
        (Available at:) (Accessed November 29, 2019)