Advertisement
Review Article| Volume 40, ISSUE 2, P189-204, June 2020

Precision Therapy for Inherited Retinal Disease

At the Forefront of Genomic Medicine
  • Nicole Koulisis
    Affiliations
    Department of Surgery, The Vision Center, Children’s Hospital Los Angeles, Los Angeles, CA, USA

    The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA

    USC Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA
    Search for articles by this author
  • Aaron Nagiel
    Correspondence
    Corresponding author. 4650 Sunset Boulevard MS#88, Los Angeles, CA 90027.
    Affiliations
    Department of Surgery, The Vision Center, Children’s Hospital Los Angeles, Los Angeles, CA, USA

    The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA

    USC Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Schachat AP, Wilkinson CP, Hinton DR, et al. Ryan's retina. 5th edition. 2013.

        • Yerxa B.
        Progress in inherited retinal disease drug discovery and development: a foundation's perspective.
        Pharm Res. 2018; 35: 239
        • Hafler B.P.
        Clinical progress in inherited retinal degenerations: gene therapy clinical trials and advances in genetic sequencing.
        Retina. 2017; 37: 417-423
        • Stone E.M.
        • Andorf J.L.
        • Whitmore S.S.
        • et al.
        Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease.
        Ophthalmology. 2017; 124: 1314-1331
        • Bhattacharya S.S.
        • Wright A.F.
        • Clayton J.F.
        • et al.
        Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28.
        Nature. 1984; 309: 253-255
        • Daiger S.
        RetNet: summaries of genes and loci causing retinal diseases.
        2019 (Available at:) (Accessed October 29, 2019)
        • Yang U.
        • Gentleman S.
        • Gai X.
        • et al.
        Utility of in vitro mutagenesis of RPE65 protein for verification of mutational pathogenicity before gene therapy.
        JAMA Ophthalmol. 2019; : 1-9https://doi.org/10.1001/jamaophthalmol.2019.3914
        • Flannery J.G.
        • Zolotukhin S.
        • Vaquero M.I.
        • et al.
        Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.
        Proc Natl Acad Sci U S A. 1997; 94: 6916-6921
        • Naldini L.
        • Blomer U.
        • Gage F.H.
        • et al.
        Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector.
        Proc Natl Acad Sci U S A. 1996; 93: 11382-11388
        • Miyoshi H.
        • Takahashi M.
        • Gage F.H.
        • et al.
        Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector.
        Proc Natl Acad Sci U S A. 1997; 94: 10319-10323
        • Auricchio A.
        • Kobinger G.
        • Anand V.
        • et al.
        Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model.
        Hum Mol Genet. 2001; 10: 3075-3081
        • Willett K.
        • Bennett J.
        Immunology of AAV-mediated gene transfer in the eye.
        Front Immunol. 2013; 4: 261
        • Bennett J.
        Immune response following intraocular delivery of recombinant viral vectors.
        Gene Ther. 2003; 10: 977-982
        • Stieger K.
        • Lheriteau E.
        • Moullier P.
        • et al.
        AAV-mediated gene therapy for retinal disorders in large animal models.
        ILAR J. 2009; 50: 206-224
        • Singh M.S.
        • Park S.S.
        • Albini T.A.
        • et al.
        Retinal stem cell transplantation: balancing safety and potential.
        Prog Retin Eye Res. 2019; : 100779https://doi.org/10.1016/j.preteyeres.2019.100779
        • Davis J.L.
        • Gregori N.Z.
        • MacLaren R.E.
        • et al.
        Surgical technique for subretinal gene therapy in humans with inherited retinal degeneration.
        Retina. 2019; 39: S2-S8
        • Gregori N.Z.
        • Lam B.L.
        • Davis J.L.
        Intraoperative use of microscope-integrated optical coherence tomography for subretinal gene therapy delivery.
        Retina. 2019; 39: S9-S12
        • Ramsden C.M.
        • Powner M.B.
        • Carr A.J.
        • et al.
        Stem cells in retinal regeneration: past, present and future.
        Development. 2013; 140: 2576-2585
        • Acland G.M.
        • Aguirre G.D.
        • Ray J.
        • et al.
        Gene therapy restores vision in a canine model of childhood blindness.
        Nat Genet. 2001; 28: 92-95
        • Russell S.
        • Bennett J.
        • Wellman J.A.
        • et al.
        Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial.
        Lancet. 2017; 390: 849-860
        • Maguire A.M.
        • Russell S.
        • Wellman J.A.
        • et al.
        Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials.
        Ophthalmology. 2019; 126: 1273-1285
        • Simunovic M.P.
        • Moore A.T.
        The cone dystrophies.
        Eye (Lond). 1998; 12: 553-565
        • Kohl S.
        • Varsanyi B.
        • Antunes G.A.
        • et al.
        CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia.
        Eur J Hum Genet. 2005; 13: 302-308
        • Wissinger B.
        • Gamer D.
        • Jagle H.
        • et al.
        CNGA3 mutations in hereditary cone photoreceptor disorders.
        Am J Hum Genet. 2001; 69: 722-737
        • Seabra M.C.
        • Brown M.S.
        • Goldstein J.L.
        Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase.
        Science. 1993; 259: 377-381
        • Xue K.
        • Jolly J.K.
        • Barnard A.R.
        • et al.
        Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia.
        Nat Med. 2018; 24: 1507-1512
        • Dimopoulos I.S.
        • Hoang S.C.
        • Radziwon A.
        • et al.
        Two-year results after AAV2-mediated gene therapy for choroideremia: the alberta experience.
        Am J Ophthalmol. 2018; 193: 130-142
        • Lam B.L.
        • Davis J.L.
        • Gregori N.Z.
        • et al.
        Choroideremia gene therapy phase 2 clinical trial: 24-month results.
        Am J Ophthalmol. 2019; 197: 65-73
        • Fischer M.D.
        • Ochakovski G.A.
        • Beier B.
        • et al.
        Efficacy and safety of retinal gene therapy using adeno-associated virus vector for patients with choroideremia: a randomized clinical trial.
        JAMA Ophthalmol. 2019; https://doi.org/10.1001/jamaophthalmol.2019.3278
        • Gerber S.
        • Rozet J.M.
        • van de Pol T.J.
        • et al.
        Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease.
        Genomics. 1998; 48: 139-142
        • Zhou J.
        • Kim S.R.
        • Westlund B.S.
        • et al.
        Complement activation by bisretinoid constituents of RPE lipofuscin.
        Invest Ophthalmol Vis Sci. 2009; 50: 1392-1399
        • Martinez-Fernandez De La Camara C.
        • Nanda A.
        • Salvetti A.P.
        • et al.
        Gene therapy for the treatment of X-linked retinitis pigmentosa.
        Expert Opin Orphan Drugs. 2018; 6: 167-177
      2. Nightstar announces planned initiation of phase 2/3 expansion study in XIRIUS trial for NSR-RPGR in XLRP and reports Third quarter 2018 financial results.
        (Available at:) (Accessed November 1, 2019)
      3. Biogen announces agreement to acquire Nightstar therapeutics to establish clinical pipeline of gene therapy candidates in Ophthalmology. Accessed November 15, 2019. Available at: https://investors.biogen.com/news-releases/news-release-details/biogen-announces-agreement-acquire-nightstar-therapeutics.

        • Tanimoto N.
        • Muehlfriedel R.L.
        • Fischer M.D.
        • et al.
        Vision tests in the mouse: functional phenotyping with electroretinography.
        Front Biosci (Landmark Ed). 2009; 14: 2730-2737
        • Fischer M.D.
        • McClements M.E.
        • Martinez-Fernandez de la Camara C.
        • et al.
        Codon-optimized rpgr improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis pigmentosa.
        Mol Ther. 2017; 25: 1854-1865
        • Conlon T.J.
        • Deng W.T.
        • Erger K.
        • et al.
        Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa.
        Hum Gene Ther Clin Dev. 2013; 24: 23-28
        • Ghazi N.G.
        • Abboud E.B.
        • Nowilaty S.R.
        • et al.
        Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial.
        Hum Genet. 2016; 135: 327-343
        • Ferrari S.
        • Di Iorio E.
        • Barbaro V.
        • et al.
        Retinitis pigmentosa: genes and disease mechanisms.
        Curr Genomics. 2011; 12: 238-249
        • Pichard V.
        • Provost N.
        • Mendes-Madeira A.
        • et al.
        AAV-mediated gene therapy halts retinal degeneration in PDE6beta-deficient dogs.
        Mol Ther. 2016; 24: 867-876
        • Spandau U.H.
        • Rohrschneider K.
        Prevalence and geographical distribution of Usher syndrome in Germany.
        Graefes Arch Clin Exp Ophthalmol. 2002; 240: 495-498
        • Tsang S.H.
        • Aycinena A.R.P.
        • Sharma T.
        Ciliopathy: Usher Syndrome.
        Adv Exp Med Biol. 2018; 1085: 167-170
        • Weleber R.G.
        • Stout T.
        • Lauer A.K.
        • et al.
        Early findings in a Phase I/IIa clinical program for Usher syndrome 1B (USH1B; MIM #276900).
        Invest Ophthalmol Vis Sci. 2015; 56: 2286
        • Wood E.H.
        • Lertjirachai I.
        • Ghiam B.K.
        • et al.
        The natural history of congenital X-linked retinoschisis and conversion between phenotypes over time.
        Ophthalmol Retina. 2019; 3: 77-82
        • Ou J.
        • Vijayasarathy C.
        • Ziccardi L.
        • et al.
        Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer.
        J Clin Invest. 2015; 125: 2891-2903
        • Cukras C.
        • Wiley H.E.
        • Jeffrey B.G.
        • et al.
        Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase I/IIa trial by intravitreal delivery.
        Mol Ther. 2018; 26: 2282-2294
      4. AGTC. AGTC announces topline interim six-month data from phase 1/2 X-linked retinoschisis clinical study; termination of biogen collaboration.
        (Available at:) (Accessed October 30, 2019)
        • Cong L.
        • Ran F.A.
        • Cox D.
        • et al.
        Multiplex genome engineering using CRISPR/Cas systems.
        Science. 2013; 339: 819-823
        • Burnight E.R.
        • Gupta M.
        • Wiley L.A.
        • et al.
        Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration.
        Mol Ther. 2017; 25: 1999-2013
        • Ruan G.X.
        • Barry E.
        • Yu D.
        • et al.
        CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10.
        Mol Ther. 2017; 25: 331-341
      5. Allergan and editas medicine initiate the brilliance phase 1/2 clinical trial of AGN-151587 (EDIT-101) for the treatment of LCA10.
        (Available at:) (Accessed November 1, 2019)
        • Maeder M.L.
        • Stefanidakis M.
        • Wilson C.J.
        • et al.
        Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10.
        Nat Med. 2019; 25: 229-233
        • DiCarlo J.E.
        • Mahajan V.B.
        • Tsang S.H.
        Gene therapy and genome surgery in the retina.
        J Clin Invest. 2018; 128: 2177-2188
        • Gerard X.
        • Garanto A.
        • Rozet J.M.
        • et al.
        Antisense oligonucleotide therapy for inherited retinal dystrophies.
        Adv Exp Med Biol. 2016; 854: 517-524
        • Collin R.W.
        • den Hollander A.I.
        • van der Velde-Visser S.D.
        • et al.
        Antisense oligonucleotide (AON)-based therapy for leber congenital amaurosis caused by a frequent mutation in CEP290.
        Mol Ther Nucleic Acids. 2012; 1: e14
        • Cideciyan A.V.
        • Jacobson S.G.
        • Beltran W.A.
        • et al.
        Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement.
        Proc Natl Acad Sci U S A. 2013; 110: E517-E525
        • Hanany M.
        • Rivolta C.
        • Sharon D.
        Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases.
        Proc Natl Acad Sci U S A. 2020; 117: 2710-2716
        • Jiman O.A.
        • Taylor R.L.
        • Lenassi E.
        • et al.
        Diagnostic yield of panel-based genetic testing in syndromic inherited retinal disease.
        Eur J Hum Genet. 2019; https://doi.org/10.1038/s41431-019-0548-5
        • Patel A.
        • Hayward J.D.
        • Tailor V.
        • et al.
        The oculome panel test: next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders.
        Ophthalmology. 2019; 126: 888-907
        • Maguire A.M.
        • High K.A.
        • Auricchio A.
        • et al.
        Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial.
        Lancet. 2009; 374: 1597-1605