Advertisement
Review Article| Volume 40, ISSUE 2, P221-230, June 2020

The Future of Clinical Diagnosis

Moving Functional Genomics Approaches to the Bedside
      Whole-genome sequencing (WGS) identifies critical alterations in the genome that are not present in the coding genes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Green E.D.
        • Guyer M.S.
        Charting a course for genomic medicine from base pairs to bedside.
        Nature. 2011; 470: 204-213
        • MuzafarBeigh M.
        Next-generation sequencing: the translational medicine approach from “bench to bedside to population” (vol. 3).
        Medicines. 2016; 3: 14
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Stavropoulos D.J.
        • Merico D.
        • Jobling R.
        • et al.
        Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine.
        NPJ Genom Med. 2016; 1: 15012
        • Caspar S.M.
        • Dubacher N.
        • Kopps A.M.
        • et al.
        Clinical sequencing: from raw data to diagnosis with lifetime value.
        Clin Genet. 2018; 93: 508-519
        • Mostovoy Y.
        • Levy-Sakin M.
        • Lam J.
        • et al.
        A hybrid approach for de novo human genome sequence assembly and phasing.
        Nat Methods. 2016; 13: 587
        • Barseghyan H.
        • Tang W.
        • Wang R.T.
        • et al.
        Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis.
        Genome Med. 2017; 9: 90
        • Egger G.
        • Liang G.
        • Aparicio A.
        • et al.
        Epigenetics in human disease and prospects for epigenetic therapy.
        Nature. 2004; 429: 457-463
        • Gibney E.R.
        • Nolan C.M.
        Epigenetics and gene expression.
        Heredity. 2010; 105: 4
        • Lim D.H.
        • Maher E.R.
        DNA methylation: a form of epigenetic control of gene expression.
        Obstet Gynaecol. 2010; 12: 37-42
        • Li D.
        • Zhang B.
        • Xing X.
        • et al.
        Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation.
        Methods. 2015; 72: 29-40
        • Li Y.
        • Tollefsbol T.O.
        DNA methylation detection: bisulfite genomic sequencing analysis.
        MethodsMol Biol. 2011; 791: 11-21
        • Issa I.A.
        • Noureddine M.
        Colorectal cancer screening: an updated review of the available options.
        World J Gastroenterol. 2017; 23: 5086-5096
        • Schenkel L.C.
        • Schwartz C.
        • Skinner C.
        • et al.
        Clinical validation of fragile X syndrome screening by DNA methylation array.
        J Mol Diagn. 2016; 18: 834-841
        • Choufani S.
        • Cytrynbaum C.
        • Chung B.H.Y.
        • et al.
        NSD1 mutations generate a genome-wide DNA methylation signature.
        Nat Commun. 2015; 6: 10207
        • Aref-Eshghi E.
        • Rodenhiser D.I.
        • Schenkel L.C.
        • et al.
        Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes.
        Am J Hum Genet. 2018; 102: 156-174
        • Aref-Eshghi E.
        • Bend E.G.
        • Hood R.L.
        • et al.
        BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes.
        Nat Commun. 2018; 9: 4885
        • Aref-Eshghi E.
        • Bend E.G.
        • Colaiacovo S.
        • et al.
        Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions.
        Am J Hum Genet. 2019; https://doi.org/10.1016/j.ajhg.2019.03.008
      1. Genome web, April 2019. Available at: https://www.genomeweb.com/molecular-diagnostics/first-epigenetic-signature-test-inherited-disorders-launch-us-europe. Accessed July 22, 2019.

        • Li D.
        • Tian L.
        • Hakonarson H.
        Increasing diagnostic yield by RNA-Sequencing in rare disease-bypass hurdles of interpreting intronic or splice-altering variants.
        Ann Transl Med. 2018; 6: 126
        • Byron S.A.
        • Van Keuren-Jensen K.R.
        • Engelthaler D.M.
        • et al.
        Translating RNA sequencing into clinical diagnostics: opportunities and challenges.
        Nat Rev Genet. 2016; 17: 257
        • Kremer L.S.
        • Bader D.M.
        • Mertes C.
        • et al.
        Genetic diagnosis of Mendelian disorders via RNA sequencing.
        Nat Commun. 2017; 8: 15824
        • Cummings B.B.
        • Marshall J.L.
        • Tukiainen T.
        • et al.
        Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
        Sci Transl Med. 2017; 9 ([pii:eaal5209])
        • Gonorazky H.D.
        • Naumenko S.
        • Ramani A.K.
        • et al.
        Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease.
        Am J Hum Genet. 2019; 104: 466-483
      2. GTEx portal. Available at: https://gtexportal.org/home/. Accessed July 22, 2019.

        • Chong J.
        • Soufan O.
        • Caraus I.
        • et al.
        MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis.
        Nucleic Acids Res. 2018; 46: W486-W494
        • Boccuto L.
        • Chen C.-F.
        • Pittman A.R.
        • et al.
        Decreased tryptophan metabolism in patients with autism spectrum disorders.
        Mol Autism. 2013; 4: 16
        • Lauren Cason A.
        • Ikeguchi Y.
        • Skinner C.
        • et al.
        X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome.
        Eur J Hum Genet. 2003; 11: 937
        • Li C.
        • Brazill J.M.
        • Liu S.
        • et al.
        Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome.
        Nat Commun. 2017; 8: 1257
        • Findlay G.M.
        • Daza R.M.
        • Martin B.
        • et al.
        Accurate classification of BRCA1 variants with saturation genome editing.
        Nature. 2018; 562: 217-222
        • Starita L.M.
        • Islam M.M.
        • Banerjee T.
        • et al.
        A multiplex homology-directed DNA repair assay reveals the impact of more than 1,000 BRCA1missense substitution variants on protein function.
        Am J Hum Genet. 2018; 103: 498-508
        • Drost M.
        • Tiersma Y.
        • Thompson B.A.
        • et al.
        A functional assay–based procedure to classify mismatch repair gene variants in Lynch syndrome.
        Genet Med. 2018; https://doi.org/10.1038/s41436-018-0372-2
        • Starita L.M.
        • Ahituv N.
        • Dunham M.J.
        • et al.
        Variant Interpretation: Functional Assays to the Rescue.
        Am J Hum Genet. 2017; 101: 315-325
        • Fowler D.M.
        • Araya C.L.
        • Fleishman S.J.
        • et al.
        High-resolution mapping of protein sequence-function relationships.
        Nat Methods. 2010; 7: 741-746
        • Ernst A.
        • Gfeller D.
        • Kan Z.
        • et al.
        Coevolution of PDZ domain-ligand interactions analyzed by high-throughput phage display and deep sequencing.
        MolBiosyst. 2010; 6: 1782-1790
        • Hietpas R.T.
        • Jensen J.D.
        • Bolon D.N.A.
        Experimental illumination of a fitness landscape.
        Proc Natl Acad Sci U S A. 2011; 108: 7896-7901
        • Weile J.
        • Roth F.P.
        Multiplexed assays of variant effects contribute to a growing genotype-phenotype atlas.
        Hum Genet. 2018; 137: 665-678
        • Movva R.
        • Greenside P.
        • Marinov G.K.
        • et al.
        Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays.
        PLoS One. 2019; 14: e0218073
        • Hoskinson D.C.
        • Dubuc A.M.
        • Mason-Suares H.
        The current state of clinical interpretation of sequence variants.
        CurrOpin Genet Dev. 2017; 42: 33-39
        • Koczkowska M.
        • Chen Y.
        • Callens T.
        • et al.
        Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting <em>NF1</em>codons 844–848.
        Am J Hum Genet. 2018; 102: 69-87
      3. RNA-based NF1testing on blood: Available at: https://www.uab.edu/medicine/genetics/medical-genomics-laboratory/testing-services/nf1-legius-syndrome-and-rasopathies/nf1-via-rna. Accessed July 22, 2019.

        • Zhou J.
        • Theesfeld C.L.
        • Yao K.
        • et al.
        Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk.
        Nat Genet. 2018; 50: 1171-1179
        • Evans P.
        • Wu C.
        • Lindy A.
        • et al.
        Genetic variant pathogenicity prediction trained using disease-specific clinical sequencing data sets.
        Genome Res. 2019 Jul; 29: 1144-1151
        • Sundaram L.
        • Gao H.
        • Padigepati S.R.
        • et al.
        Predicting the clinical impact of human mutation with deep neural networks.
        Nat Genet. 2018; 50: 1161-1170
        • Argelaguet R.
        • Velten B.
        • Arnol D.
        • et al.
        Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets.
        Mol Syst Biol. 2018; 14: e8124
        • Singh A.
        • Shannon C.P.
        • Gautier B.
        • et al.
        DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.
        Bioinformatics. 2019; https://doi.org/10.1093/bioinformatics/bty1054
        • Ipe J.
        • Swart M.
        • Burgess K.S.
        • et al.
        High-throughput assays to assess the functional impact of genetic variants: a road towards genomic-driven medicine.
        ClinTranslSci. 2017; 10: 67-77
        • Perrino C.
        • Barabási A.L.
        • Condorelli G.
        • et al.
        Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.
        Cardiovasc Res. 2017; 113: 725-736
        • Zhu Y.
        • Tazearslan C.
        • Suh Y.
        Challenges and progress in interpretation of non-coding genetic variants associated with human disease.
        ExpBiol Med (Maywood). 2017; 242: 1325-1334
        • Woods N.T.
        • Baskin R.
        • Golubeva V.
        • et al.
        Functional assays provide a robust tool for the clinical annotation of genetic variants of uncertain significance.
        NPJ Genom Med. 2016; 1: 16001