Advertisement
Review Article| Volume 40, ISSUE 2, P135-148, June 2020

The Evolution of Constitutional Sequence Variant Interpretation

      A combination of different types of evidence incorporating population data, functional studies, clinical data, and predictive tools is necessary for thorough, thoughtful variant classification.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ekong R.
        • Nellist M.
        • Hoogeveen-Westerveld M.
        • et al.
        Variants within TSC2 Exons 25 and 31 are very unlikely to cause clinically diagnosable tuberous sclerosis.
        Hum Mutat. 2016; 37: 364-370
        • Cotton R.G.
        • Scriver C.R.
        Proof of “disease causing” mutation.
        Hum Mutat. 1998; 12: 1-3
        • Easton D.F.
        • Deffenbaugh A.M.
        • Pruss D.
        • et al.
        A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes.
        Am J Hum Genet. 2007; 81: 873-883
        • Miller P.J.
        • Duraisamy S.
        • Newell J.A.
        • et al.
        Classifying variants of CDKN2A using computational and laboratory studies.
        Hum Mutat. 2011; 32: 900-911
        • Sosnay P.R.
        • Siklosi K.R.
        • Van Goor F.
        • et al.
        Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene.
        Nat Genet. 2013; 45: 1160-1167
        • Thompson B.A.
        • Spurdle A.B.
        • Plazzer J.-P.
        • et al.
        Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database.
        Nat Genet. 2014; 46: 107-115
        • Walsh R.
        • Mazzarotto F.
        • Whiffin N.
        • et al.
        Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy.
        Genome Med. 2019; 11: 5
        • Harrison S.M.
        • Dolinsky J.S.
        • Knight Johnson A.E.
        • et al.
        Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar.
        Genet Med. 2017; 19: 1096-1104
      1. ACMG recommendations for standards for interpretation of sequence variations.
        Genet Med. 2000; 2: 302
        • Richards C.S.
        • Bale S.
        • Bellissimo D.B.
        • et al.
        ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007.
        Genet Med. 2008; 10: 294-300
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Plon S.E.
        • Eccles D.M.
        • Easton D.
        • et al.
        Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results.
        Hum Mutat. 2008; 29: 1282-1291
        • Abou Tayoun A.N.
        • Pesaran T.
        • DiStefano M.T.
        • et al.
        Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion.
        Hum Mutat. 2018; 39: 1517-1524
        • Brookes A.J.
        The essence of SNPs.
        Gene. 1999; 234: 177-186
        • International HapMap 3 Consortium
        • Altshuler D.M.
        • Gibbs R.A.
        • et al.
        Integrating common and rare genetic variation in diverse human populations.
        Nature. 2010; 467: 52-58
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • et al.
        • 1000 Genomes Project Consortium
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Whiffin N.
        • Minikel E.
        • Walsh R.
        • et al.
        Using high-resolution variant frequencies to empower clinical genome interpretation.
        Genet Med. 2017; 19: 1151-1158
        • Young E.L.
        • Feng B.J.
        • Stark A.W.
        • et al.
        Multigene testing of moderate-risk genes: be mindful of the missense.
        J Med Genet. 2016; 53: 366-376
        • Brnich S.E.
        • Rivera-Muñoz E.A.
        • Berg J.S.
        Quantifying the potential of functional evidence to reclassify variants of uncertain significance in the categorical and Bayesian interpretation frameworks.
        Hum Mutat. 2018; 39: 1531-1541
        • Mester J.L.
        • Ghosh R.
        • Pesaran T.
        • et al.
        Gene-specific criteria for PTEN variant curation: recommendations from the ClinGen PTEN expert panel.
        Hum Mutat. 2018; 39: 1581-1592
        • Kato S.
        • Han S.-Y.
        • Liu W.
        • et al.
        Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.
        Proc Natl Acad Sci U S A. 2003; 100: 8424-8429
        • Gasperini M.
        • Starita L.
        • Shendure J.
        The power of multiplexed functional analysis of genetic variants.
        Nat Protoc. 2016; 11: 1782-1787
        • Maxwell K.N.
        • Hart S.N.
        • Vijai J.
        • et al.
        Evaluation of ACMG-guideline-based variant classification of cancer susceptibility and non-cancer-associated genes in families affected by breast cancer.
        Am J Hum Genet. 2016; 98: 801-817
        • Ghosh R.
        • Oak N.
        • Plon S.E.
        Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines.
        Genome Biol. 2017; 18: 225
        • Sun H.
        • Yu G.
        New insights into the pathogenicity of non-synonymous variants through multi-level analysis.
        Sci Rep. 2019; 9: 1667
        • Moles-Fernández A.
        • Duran-Lozano L.
        • Montalban G.
        • et al.
        Computational tools for splicing defect prediction in breast/ovarian cancer genes: how efficient are they at predicting RNA alterations?.
        Front Genet. 2018; 9: 366
        • Sibley C.R.
        • Blazquez L.
        • Ule J.
        Lessons from non-canonical splicing.
        Nat Rev Genet. 2016; 17: 407-421
        • Katsonis P.
        • Koire A.
        • Wilson S.J.
        • et al.
        Single nucleotide variations: biological impact and theoretical interpretation.
        Protein Sci. 2014; 23: 1650-1666
        • Tavtigian S.V.
        • Greenblatt M.S.
        • Lesueur F.
        • et al.
        • IARC Unclassified Genetic Variants Working Group
        In silico analysis of missense substitutions using sequence-alignment based methods.
        Hum Mutat. 2008; 29: 1327-1336
        • Jordan D.M.
        • Ramensky V.E.
        • Sunyaev S.R.
        Human allelic variation: perspective from protein function, structure, and evolution.
        Curr Opin Struct Biol. 2010; 20: 342-350
        • Ioannidis N.M.
        • Rothstein J.H.
        • Pejaver V.
        • et al.
        REVEL: an ensemble method for predicting the pathogenicity of rare missense variants.
        Am J Hum Genet. 2016; 99: 877-885
        • Hart S.N.
        • Hoskin T.
        • Shimelis H.
        • et al.
        Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models.
        Genet Med. 2019; 21: 71-80
        • Grimm D.G.
        • Azencott C.-A.
        • Aicheler F.
        • et al.
        The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity.
        Hum Mutat. 2015; 36: 513-523
        • Polla D.L.
        • Cardoso M.T.O.
        • Silva M.C.B.
        • et al.
        Use of targeted exome sequencing for molecular diagnosis of skeletal disorders.
        PLoS One. 2015; 10: e0138314
        • Weinberg C.R.
        • Umbach D.M.
        Choosing a retrospective design to assess joint genetic and environmental contributions to risk.
        Am J Epidemiol. 2000; 152: 197-203
        • Campbell H.
        • Rudan I.
        Interpretation of genetic association studies in complex disease.
        Pharmacogenomics J. 2002; 2: 349-360
        • Anderson K.G.
        How well does paternity confidence match actual paternity?: Evidence from worldwide nonpaternity rates.
        Curr Anthropol. 2006; 47: 513-520
        • Goldgar D.E.
        Collection and analysis of pedigree data.
        Birth Defects Orig Artic Ser. 1984; 20: 61-76
        • Morton N.E.
        Sequential tests for the detection of linkage.
        Am J Hum Genet. 1955; 7: 277-318
        • Lalouel J.M.
        • Morton N.E.
        Complex segregation analysis with pointers.
        Hum Hered. 1981; 31: 312-321
        • Jarvik G.P.
        • Browning B.L.
        Consideration of cosegregation in the pathogenicity classification of genomic variants.
        Am J Hum Genet. 2016; 98: 1077-1081
        • Ku C.S.
        • Polychronakos C.
        • Tan E.K.
        • et al.
        A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease.
        Mol Psychiatry. 2013; 18: 141-153
        • Acuna-Hidalgo R.
        • Veltman J.A.
        • Hoischen A.
        New insights into the generation and role of de novo mutations in health and disease.
        Genome Biol. 2016; 17: 241
        • MacArthur D.G.
        • Manolio T.A.
        • Dimmock D.P.
        • et al.
        Guidelines for investigating causality of sequence variants in human disease.
        Nature. 2014; 508: 469-476
        • Couch F.J.
        • Shimelis H.
        • Hu C.
        • et al.
        Associations between cancer predisposition testing panel genes and breast cancer.
        JAMA Oncol. 2017; 3: 1190-1196
        • Frey M.K.
        • Sandler G.
        • Sobolev R.
        • et al.
        Multigene panels in Ashkenazi Jewish patients yield high rates of actionable mutations in multiple non-BRCA cancer-associated genes.
        Gynecol Oncol. 2017; 146: 123-128
        • Goldgar D.E.
        • Easton D.F.
        • Byrnes G.B.
        • et al.
        Genetic evidence and integration of various data sources for classifying uncertain variants into a single model.
        Hum Mutat. 2008; 29: 1265-1272
        • Tavtigian S.V.
        • Greenblatt M.S.
        • Goldgar D.E.
        • et al.
        • IARC Unclassified Genetic Variants Working Group
        Assessing pathogenicity: overview of results from the IARC Unclassified Genetic Variants Working Group.
        Hum Mutat. 2008; 29: 1261-1264
        • Goldgar D.E.
        • Easton D.F.
        • Deffenbaugh A.M.
        • et al.
        Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2.
        Am J Hum Genet. 2004; 75: 535-544
        • Tavtigian S.V.
        • Greenblatt M.S.
        • Harrison S.M.
        • et al.
        Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework.
        Genet Med. 2018; 20: 1054-1060
        • Kelly M.A.
        • Caleshu C.
        • Morales A.
        • et al.
        Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel.
        Genet Med. 2018; https://doi.org/10.1038/gim.2017.218
        • Rehm H.L.
        • Berg J.S.
        • Brooks L.D.
        • et al.
        ClinGen--the clinical genome resource.
        N Engl J Med. 2015; 372: 2235-2242
        • Rivera-Muñoz E.A.
        • Milko L.V.
        • Harrison S.M.
        • et al.
        ClinGen Variant Curation Expert Panel experiences and standardized processes for disease and gene-level specification of the ACMG/AMP guidelines for sequence variant interpretation.
        Hum Mutat. 2018; 39: 1614-1622
        • Harrison S.M.
        • Dolinksy J.S.
        • Chen W.
        • et al.
        Scaling resolution of variant classification differences in ClinVar between 41 clinical laboratories through an outlier approach.
        Hum Mutat. 2018; 39: 1641-1649