Advertisement
Review Article| Volume 40, ISSUE 2, P121-133, June 2020

The Clinical Application of RNA Sequencing in Genetic Diagnosis of Mendelian Disorders

  • Sarah L. Stenton
    Correspondence
    Corresponding author. Institute of Human Genetics (IHG), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Building 3537, Room 8128, Ingolstaedter Landstr. 1, Neuherberg D-85764, Germany.
    Affiliations
    Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany

    Institute of Human Genetics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
    Search for articles by this author
  • Holger Prokisch
    Affiliations
    Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany

    Institute of Human Genetics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
    Search for articles by this author
      Molecular genetic approaches have evolved at an astonishing pace resulting in increasingly routine use of whole exome sequencing in Mendelian disorder diagnosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ashley E.A.
        • Butte A.J.
        • Wheeler M.T.
        • et al.
        Clinical assessment incorporating a personal genome.
        Lancet. 2010; 375: 1525-1535
        • Choi M.
        • Scholl U.I.
        • Ji W.
        • et al.
        Genetic diagnosis by whole exome capture and massively parallel DNA sequencing.
        Proc Natl Acad Sci U S A. 2009; 106: 19096-19101
        • Ng S.B.
        • Buckingham K.J.
        • Lee C.
        • et al.
        Exome sequencing identifies the cause of a Mendelian disorder.
        Nat Genet. 2010; 42: 30
        • Boycott K.M.
        • Rath A.
        • Chong J.X.
        • et al.
        International cooperation to enable the diagnosis of all rare genetic diseases.
        Am J Hum Genet. 2017; 100: 695-705
        • Ankala A.
        • da Silva C.
        • Gualandi F.
        • et al.
        A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield.
        Ann Neurol. 2015; 77: 206-214
        • Yang Y.
        • Muzny D.M.
        • Xia F.
        • et al.
        Molecular findings among patients referred for clinical whole-exome sequencing.
        JAMA. 2014; 312: 1870-1879
        • Taylor J.C.
        • Martin H.C.
        • Lise S.
        • et al.
        Factors influencing success of clinical genome sequencing across a broad spectrum of disorders.
        Nat Genet. 2015; 47: 717
        • Chong J.X.
        • Buckingham K.J.
        • Jhangiani S.N.
        • et al.
        The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities.
        Am J Hum Genet. 2015; 97: 199-215
        • Bamshad M.J.
        • Ng S.B.
        • Bigham A.W.
        • et al.
        Exome sequencing as a tool for Mendelian disease gene discovery.
        Nat Rev Genet. 2011; 12: 745
        • Wortmann S.B.
        • Koolen D.A.
        • Smeitink J.A.
        • et al.
        Whole exome sequencing of suspected mitochondrial patients in clinical practice.
        J Inherit Metab Dis. 2015; 38: 437-443
        • Gilissen C.
        • Hehir-Kwa J.Y.
        • Thung D.T.
        • et al.
        Genome sequencing identifies major causes of severe intellectual disability.
        Nature. 2014; 511: 344
        • Belkadi A.
        • Bolze A.
        • Itan Y.
        • et al.
        Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants.
        Proc Natl Acad Sci U S A. 2015; 112: 5473-5478
        • Stavropoulos D.J.
        • Merico D.
        • Jobling R.
        • et al.
        Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine.
        NPJ Genom Med. 2016; 1: 15012
        • Valente E.M.
        • Bhatia K.P.
        Solving Mendelian mysteries: the non-coding genome may hold the key.
        Cell. 2018; 172: 889-891
        • Lionel A.C.
        • Costain G.
        • Monfared N.
        • et al.
        Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test.
        Genet Med. 2018; 20: 435-443
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • et al.
        • 1000 Genomes Project Consortium
        A global reference for human genetic variation.
        Nature. 2015; 526: 68
        • Sudmant P.H.
        • Rausch T.
        • Gardner E.J.
        • et al.
        An integrated map of structural variation in 2,504 human genomes.
        Nature. 2015; 526: 75
        • MacArthur D.
        • Manolio T.
        • Dimmock D.
        • et al.
        Guidelines for investigating causality of sequence variants in human disease.
        Nature. 2014; 508: 469
        • Goldstein D.B.
        • Allen A.
        • Keebler J.
        • et al.
        Sequencing studies in human genetics: design and interpretation.
        Nat Rev Genet. 2013; 14: 460
        • Lek M.
        • MacArthur D.
        The challenge of next generation sequencing in the context of neuromuscular diseases.
        J Neuromuscul Dis. 2014; 1: 135-149
        • Kremer L.S.
        • Bader D.M.
        • Mertes C.
        • et al.
        Genetic diagnosis of Mendelian disorders via RNA sequencing.
        Nat Commun. 2017; 8: 15824
        • Cummings B.B.
        • Marshall J.L.
        • Tukiainen T.
        • et al.
        Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
        Sci Transl Med. 2017; 9 ([pii:eaal5209])
        • Jung H.
        • Lee D.
        • Lee J.
        • et al.
        Intron retention is a widespread mechanism of tumor-suppressor inactivation.
        Nat Genet. 2015; 47: 1242
        • Li Y.I.
        • van de Geijn B.
        • Raj A.
        • et al.
        RNA splicing is a primary link between genetic variation and disease.
        Science. 2016; 352: 600-604
        • Cieślik M.
        • Chinnaiyan A.M.
        Cancer transcriptome profiling at the juncture of clinical translation.
        Nat Rev Genet. 2018; 19: 93
        • Sandmann S.
        • De Graaf A.O.
        • Karimi M.
        • et al.
        Evaluating variant calling tools for non-matched next-generation sequencing data.
        Sci Rep. 2017; 7: 43169
        • Eilbeck K.
        • Quinlan A.
        • Yandell M.
        Settling the score: variant prioritization and Mendelian disease.
        Nat Rev Genet. 2017; 18: 599
        • Cooper G.M.
        • Shendure J.
        Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.
        Nat Rev Genet. 2011; 12: 628
        • Karczewski K.J.
        • Weisburd B.
        • Thomas B.
        • et al.
        The ExAC browser: displaying reference data information from over 60 000 exomes.
        Nucleic Acids Res. 2016; 45: D840-D845
        • Lowe R.
        • Shirley N.
        • Bleackley M.
        • et al.
        Transcriptomics technologies.
        PLoS Comput Biol. 2017; 13: e1005457
        • Mortazavi A.
        • Williams B.A.
        • McCue K.
        • et al.
        Mapping and quantifying mammalian transcriptomes by RNA-seq.
        Nat Methods. 2008; 5: 621
        • Byron S.A.
        • Van Keuren-Jensen K.R.
        • Engelthaler D.M.
        • et al.
        Translating RNA sequencing into clinical diagnostics: opportunities and challenges.
        Nat Rev Genet. 2016; 17: 257
        • Adiconis X.
        • Borges-Rivera D.
        • Satija R.
        • et al.
        Comparative analysis of RNA sequencing methods for degraded or low-input samples.
        Nat Methods. 2013; 10: 623
      1. TruSeq® RNA sample preparation v2 guide (Illumina). Available at: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseqrna/truseq-rna-sample-prep-v2-guide-15026495-f.pdf.

        • Zhao S.
        • Zhang Y.
        • Gordon W.
        • et al.
        Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap.
        BMC Genomics. 2015; 16: 675
        • Levin J.Z.
        • Yassour M.
        • Adiconis X.
        • et al.
        Comprehensive comparative analysis of strand-specific RNA sequencing methods.
        Nat Methods. 2010; 7: 709
        • Wang Z.
        • Gerstein M.
        • Snyder M.
        RNA-seq: a revolutionary tool for transcriptomics.
        Nat Rev Genet. 2009; 10: 57
        • Eckersley-Maslin M.A.
        • Spector D.L.
        Random monoallelic expression: regulating gene expression one allele at a time.
        Trends Genet. 2014; 30: 237-244
        • Reinius B.
        • Sandberg R.
        Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation.
        Nat Rev Genet. 2015; 16: 653
        • Lossie A.C.
        • Whitney M.M.
        • Amidon D.
        • et al.
        Distinct phenotypes distinguish the molecular classes of Angelman syndrome.
        J Med Genet. 2001; 38: 834-845
        • Klimpe S.
        • Zibat A.
        • Zechner U.
        • et al.
        Evaluating the effect of spastin splice mutations by quantitative allele specific expression assay.
        Eur J Neurol. 2011; 18: 99-105
        • Wood D.L.
        • Nones K.
        • Steptoe A.
        • et al.
        Recommendations for accurate resolution of gene and isoform allele-specific expression in RNA-seq data.
        PLoS One. 2015; 10: e0126911
        • Rivas M.A.
        • Pirinen M.
        • Conrad D.F.
        • et al.
        Human genomics. effect of predicted protein-truncating genetic variants on the human transcriptome.
        Science. 2015; 348: 666-669
        • Zhao J.
        • Akinsanmi I.
        • Arafat D.
        • et al.
        A burden of rare variants associated with extremes of gene expression in human peripheral blood.
        Am J Hum Genet. 2016; 98: 299-309
        • Tazi J.
        • Bakkour N.
        • Stamm S.
        Alternative splicing and disease.
        Biochim Biophys Acta. 2009; 1792: 14-26
        • Scotti M.M.
        • Swanson M.S.
        RNA mis-splicing in disease.
        Nat Rev Genet. 2016; 17: 19
        • Singh R.K.
        • Cooper T.A.
        Pre-mRNA splicing in disease and therapeutics.
        Trends Mol Med. 2012; 18: 472-482
        • Soemedi R.
        • Cygan K.J.
        • Rhine C.L.
        • et al.
        Pathogenic variants that alter protein code often disrupt splicing.
        Nat Genet. 2017; 49: 848
        • Xiong H.Y.
        • Alipanahi B.
        • Lee L.J.
        • et al.
        RNA splicing. the human splicing code reveals new insights into the genetic determinants of disease.
        Science. 2015; 347: 1254806
        • Harrow J.
        • Frankish A.
        • Gonzalez J.M.
        • et al.
        GENCODE: the reference human genome annotation for the ENCODE project.
        Genome Res. 2012; 22: 1760-1774
        • Li Y.I.
        • Knowles D.A.
        • Humphrey J.
        • et al.
        LeafCutter: annotation-free quantification of RNA splicing.
        Nat Genet. 2018; 50: 151
        • Pervouchine D.D.
        • Knowles D.G.
        • Guigo R.
        Intron-centric estimation of alternative splicing from RNA-seq data.
        Bioinformatics. 2012; 29: 273-274
        • Taylor R.W.
        • Pyle A.
        • Griffin H.
        • et al.
        Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies.
        JAMA. 2014; 312: 68-77
        • Ohtake A.
        • Murayama K.
        • Mori M.
        • et al.
        Diagnosis and molecular basis of mitochondrial respiratory chain disorders: exome sequencing for disease gene identification.
        Biochim Biophys Acta. 2014; 1840: 1355-1359
        • Kohda M.
        • Tokuzawa Y.
        • Kishita Y.
        • et al.
        A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies.
        PLoS Genet. 2016; 12: e1005679
        • Pronicka E.
        • Piekutowska-Abramczuk D.
        • Ciara E.
        • et al.
        New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre.
        J Transl Med. 2016; 14: 174
        • Elstner M.
        • Andreoli C.
        • Ahting U.
        • et al.
        MitoP2: an integrative tool for the analysis of the mitochondrial proteome.
        Mol Biotechnol. 2008; 40: 306-315
        • Wortmann S.B.
        • Mayr J.A.
        • Nuoffer J.M.
        • et al.
        A guideline for the diagnosis of pediatric mitochondrial disease: the value of muscle and skin biopsies in the genetics era.
        Neuropediatrics. 2017; 48: 309-314
        • Gorman G.S.
        • Chinnery P.F.
        • DiMauro S.
        • et al.
        Mitochondrial diseases.
        Nat Rev Dis Primers. 2016; 2: 16080
        • Haack T.B.
        • Kopajtich R.
        • Freisinger P.
        • et al.
        ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy.
        Am J Hum Genet. 2013; 93: 211-223
        • Haack T.B.
        • Danhauser K.
        • Haberberger B.
        • et al.
        Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency.
        Nat Genet. 2010; 42: 1131
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • GTEx Consortium
        Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans.
        Science. 2015; 348: 648-660
        • Mele M.
        • Ferreira P.G.
        • Reverter F.
        • et al.
        Human genomics. the human transcriptome across tissues and individuals.
        Science. 2015; 348: 660-665
        • Wang E.T.
        • Sandberg R.
        • Luo S.
        • et al.
        Alternative isoform regulation in human tissue transcriptomes.
        Nature. 2008; 456: 470
        • Kremer L.S.
        • Wortmann S.B.
        • Prokisch H.
        “Transcriptomics”: molecular diagnosis of inborn errors of metabolism via RNA-sequencing.
        J Inherit Metab Dis. 2018; 41: 525-532
        • Gagneur J.
        • Stegle O.
        • Zhu C.
        • et al.
        Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype.
        PLoS Genet. 2013; 9: e1003803
        • Sham P.C.
        • Purcell S.M.
        Statistical power and significance testing in large-scale genetic studies.
        Nat Rev Genet. 2014; 15: 335