Advertisement
Review Article| Volume 40, ISSUE 2, P163-187, June 2020

Bioinformatics in Clinical Genomic Sequencing

      Clinical bioinformatics encompasses generating raw sequence data from the machine through identifying reportable variants.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baudhuin L.M.
        • Lagerstedt S.A.
        • Klee E.W.
        • et al.
        Confirming variants in next-generation sequencing panel testing by sanger sequencing.
        J Mol Diagn. 2015; 17: 456-461
        • Mason-Suares H.
        • Landry L.
        • Lebo M.S.
        Detecting copy number variation via next generation technology.
        Curr Genet Med Rep. 2016; 4: 74-85
        • den Dunnen J.T.
        • Dalgleish R.
        • Maglott D.R.
        • et al.
        HGVS recommendations for the description of sequence variants: 2016 update.
        Hum Mutat. 2016; 37: 564-569
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • et al.
        • 1000 Genomes Project Consortium
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74
      1. gnomAD browser. Available at: http://gnomad.broadinstitute.org/. Accessed April 16, 2018.

        • Schwarz J.M.
        • Rödelsperger C.
        • Schuelke M.
        • et al.
        MutationTaster evaluates disease-causing potential of sequence alterations.
        Nat Methods. 2010; 7: 575-576
        • Reva B.
        • Antipin Y.
        • Sander C.
        Predicting the functional impact of protein mutations: application to cancer genomics.
        Nucleic Acids Res. 2011; 39: e118
        • Adzhubei I.
        • Jordan D.M.
        • Sunyaev S.R.
        Predicting functional effect of human missense mutations using PolyPhen-2.
        Curr Protoc Hum Genet. 2013; Chapter 7: Unit7.20
        • Ioannidis N.M.
        • Rothstein J.H.
        • Pejaver V.
        • et al.
        REVEL: an ensemble method for predicting the pathogenicity of rare missense variants.
        Am J Hum Genet. 2016; 99: 877-885
        • Wang K.
        • Li M.
        • Hakonarson H.
        ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.
        Nucleic Acids Res. 2010; 38: e164
        • McLaren W.
        • Gil L.
        • Hunt S.E.
        • et al.
        The ensemble variant effect predictor.
        Genome Biol. 2016; 17: 122
        • Cingolani P.
        • Platts A.
        • Wang le L.
        • et al.
        A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.
        Fly (Austin). 2012; 6: 80-92
        • Ramos A.H.
        • Lichtenstein L.
        • Gupta M.
        • et al.
        Oncotator: cancer variant annotation tool.
        Hum Mutat. 2015; 36: E2423-E2429
        • Liu X.
        • White S.
        • Peng B.
        • et al.
        WGSA: an annotation pipeline for human genome sequencing studies.
        J Med Genet. 2016; 53: 111-112
        • Strande N.T.
        • Riggs E.R.
        • Buchanan A.H.
        • et al.
        Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource.
        Am J Hum Genet. 2017; 100: 895-906
        • Samocha K.E.
        • Robinson E.B.
        • Sanders S.J.
        • et al.
        A framework for the interpretation of de novo mutation in human disease.
        Nat Genet. 2014; 46: 944-950
        • Petrovski S.
        • Wang Q.
        • Heinzen E.L.
        • et al.
        Genic intolerance to functional variation and the interpretation of personal genomes.
        PLoS Genet. 2013; 9: e1003709
        • Landrum M.J.
        • Lee J.M.
        • Benson M.
        • et al.
        ClinVar: improving access to variant interpretations and supporting evidence.
        Nucleic Acids Res. 2017; 46: D1062-D1067
        • Li M.M.
        • Datto M.
        • Duncavage E.J.
        • et al.
        Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists.
        J Mol Diagn. 2017; 19: 4-23
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Yohe S.L.
        • Carter A.B.
        • Pfeifer J.D.
        • et al.
        Standards for clinical grade genomic databases.
        Arch Pathol Lab Med. 2015; 139: 1400-1412
        • Roy S.
        • Coldren C.
        • Karunamurthy A.
        • et al.
        Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the association for molecular pathology and the College of American Pathologists.
        J Mol Diagn. 2018; 20: 4-27
        • Aziz N.
        • Zhao Q.
        • Bry L.
        • et al.
        College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests.
        Arch Pathol Lab Med. 2015; 139 (Available at:) (Accessed April 16, 2018): 481-493
      2. College of American Pathologists (CAP). Accreditation checklists. Available at: http://www.cap.org/web/home/lab/accreditation/accreditation-checklists. Accessed April 16, 2018.

        • Zook J.M.
        • Catoe D.
        • McDaniel J.
        • et al.
        Extensive sequencing of seven human genomes to characterize benchmark reference materials.
        Sci Data. 2016; 3: 160025
        • Eberle M.A.
        • Fritzilas E.
        • Krusche P.
        • et al.
        A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
        Genome Res. 2017; 27: 157-164
        • Pratt V.M.
        • Everts R.E.
        • Aggarwal P.
        • et al.
        Characterization of 137 genomic DNA reference materials for 28 pharmacogenetic genes: a GeT-RM collaborative project.
        J Mol Diagn. 2016; 18: 109-123
      3. Genetic Testing Reference Materials Coordination Program (GeT-RM) - Home. Available at: https://wwwn.cdc.gov/clia/Resources/GetRM/. Accessed April 16, 2018.

        • Duncavage E.J.
        • Abel H.J.
        • Merker J.D.
        • et al.
        A model study of in silico proficiency testing for clinical next-generation sequencing.
        Arch Pathol Lab Med. 2016; 140: 1085-1091
        • Duncavage E.J.
        • Abel H.J.
        • Pfeifer J.D.
        In silico proficiency testing for clinical next-generation sequencing.
        J Mol Diagn. 2017; 19: 35-42
        • Escalona M.
        • Rocha S.
        • Posada D.
        A comparison of tools for the simulation of genomic next-generation sequencing data.
        Nat Rev Genet. 2016; 17: 459-469
        • Poplin R.
        • Newburger D.
        • Dijamco J.
        Creating a universal SNP and small indel variant caller with deep neural networks.
        bioRxiv. 2016; https://doi.org/10.1101/092890
        • Zhao H.
        • Sun Z.
        • Wang J.
        • et al.
        CrossMap: a versatile tool for coordinate conversion between genome assemblies.
        Bioinformatics. 2014; 30: 1006-1007
      4. Lift genome annotations. Available at: http://genome.ucsc.edu/cgi-bin/hgLiftOver. Accessed April 17, 2018.

      5. Coordinate remapping service: NCBI. Available at: https://www.ncbi.nlm.nih.gov/genome/tools/remap. Accessed April 17, 2018.

      6. ga4gh. ga4gh/benchmarking-tools. GitHub. Available at: https://github.com/ga4gh/benchmarking-tools. Accessed April 16, 2018.

        • Mandelker D.
        • Schmidt R.J.
        • Ankala A.
        • et al.
        Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing.
        Genet Med. 2016; 18: 1282-1289
        • Mu W.
        • Lu H.-M.
        • Chen J.
        • et al.
        Sanger confirmation is required to achieve optimal sensitivity and specificity in next-generation sequencing panel testing.
        J Mol Diagn. 2016; 18: 923-932
        • Beck T.F.
        • Mullikin J.C.
        • Biesecker L.G.
        • on Behalf of the NISC Comparative Sequencing Program
        Systematic evaluation of sanger validation of next-generation sequencing variants.
        Clin Chem. 2016; 62: 647-654
        • Strom S.P.
        • Lee H.
        • Das K.
        • et al.
        Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory.
        Genet Med. 2014; 16: 510-515
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2009; 25: 1754-1760
        • Li H.
        • Durbin R.
        Fast and accurate long-read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2010; 26: 589-595
      7. NovoAlign | Novocraft. Available at: http://www.novocraft.com/products/novoalign/. Accessed April 16, 2018.

        • Li H.
        A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.
        Bioinformatics. 2011; 27: 2987-2993
        • McKenna A.
        • Hanna M.
        • Banks E.
        • et al.
        The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303
        • Poplin R.
        • Ruano-Rubio V.
        • DePristo M.A.
        • et al.
        Scaling accurate genetic variant discovery to tens of thousands of samples.
        BioRxiv. 2017; https://doi.org/10.1101/201178
      8. Erik Garrison, Gabor Marth. Haplotype-based variant detection from short-read sequencing. arXiv, 2012; 1207.3907

        • Ye K.
        • Schulz M.H.
        • Long Q.
        • et al.
        a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads.
        Bioinformatics. 2009; 25: 2865-2871
        • Fan X.
        • Abbott T.E.
        • Larson D.
        • et al.
        BreakDancer: identification of genomic structural variation from paired-end read mapping.
        Curr Protoc Bioinformatics. 2014; 45: 15.6.1-15.6.11
        • Handsaker R.E.
        • Van Doren V.
        • Berman J.R.
        • et al.
        Large multiallelic copy number variations in humans.
        Nat Genet. 2015; 47: 296-303
        • Chen X.
        • Schulz-Trieglaff O.
        • Shaw R.
        • et al.
        Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications.
        Bioinformatics. 2016; 32: 1220-1222
        • Fromer M.
        • Purcell S.M.
        Using XHMM software to detect copy number variation in whole-exome sequencing data.
        Curr Protoc Hum Genet. 2014; 81: 7.23.1-21
        • Pugh T.J.
        • Amr S.S.
        • Bowser M.J.
        • et al.
        VisCap: inference and visualization of germ-line copy-number variants from targeted clinical sequencing data.
        Genet Med. 2016; 18: 712-719
        • Quinlan A.R.
        BEDTools: the Swiss-army tool for genome feature analysis.
        Curr Protoc Bioinformatics. 2014; 47: 11.12.1-34
        • Cleary J.G.
        • Braithwaite R.
        • Gaastra K.
        Comparing variant call files for performance benchmarking of next-generation sequencing variant calling pipelines.
        bioRxiv. 2015; https://doi.org/10.1101/023754
      9. Babraham Bioinformatics - FastQC a quality control tool for high throughput sequence data. Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed April 16, 2018.

        • Jun G.
        • Flickinger M.
        • Hetrick K.N.
        • et al.
        Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data.
        Am J Hum Genet. 2012; 91: 839-848
      10. Picard Tools - By Broad Institute. Available at: https://broadinstitute.github.io/picard/. Accessed April 16, 2018.

        • Kircher M.
        • Witten D.M.
        • Jain P.
        • et al.
        A general framework for estimating the relative pathogenicity of human genetic variants.
        Nat Genet. 2014; 46: 310-315
        • Quang D.
        • Chen Y.
        • Xie X.
        DANN: a deep learning approach for annotating the pathogenicity of genetic variants.
        Bioinformatics. 2014; 31: 761-763