Advertisement
Review Article| Volume 40, ISSUE 2, P149-161, June 2020

Clinical Bioinformatics in Precise Diagnosis of Mitochondrial Disease

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gargis A.S.
        • Kalman L.
        • Bick D.P.
        • et al.
        Good laboratory practice for clinical next-generation sequencing informatics pipelines.
        Nat Biotechnol. 2015; 33: 689-693
        • Wallace D.C.
        Mitochondrial genetic medicine.
        Nat Genet. 2018; 50: 1642-1649
        • Wallace D.C.
        • Chalkia D.
        Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease.
        Cold Spring Harb Perspect Biol. 2013; 5: a021220
        • McCormick E.M.
        • Zolkipli-Cunningham Z.
        • Falk M.J.
        Mitochondrial disease genetics update: recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease.
        Curr Opin Pediatr. 2018; 30: 714-724
        • Wallace D.C.
        Mitochondrial DNA variation in human radiation and disease.
        Cell. 2015; 163: 33-38
        • Stewart J.B.
        • Chinnery P.F.
        The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease.
        Nat Rev Genet. 2015; 16: 530-542
        • McCormick E.
        • Place E.
        • Falk M.J.
        Molecular genetic testing for mitochondrial disease: from one generation to the next.
        Neurotherapeutics. 2013; 10: 251-261
        • Triska P.
        • Kaneva K.
        • Merkurjev D.
        • et al.
        Landscape of germline and somatic mitochondrial DNA mutations in pediatric malignancies.
        Cancer Res. 2019; 79: 1318-1330
        • Calvo S.E.
        • Compton A.G.
        • Hershman S.G.
        • et al.
        Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing.
        Sci Transl Med. 2012; 4: 118ra10
        • Lieber D.S.
        • Calvo S.E.
        • Shanahan K.
        • et al.
        Targeted exome sequencing of suspected mitochondrial disorders.
        Neurology. 2013; 80: 1762-1770
        • Ohtake A.
        • Murayama K.
        • Mori M.
        • et al.
        Diagnosis and molecular basis of mitochondrial respiratory chain disorders: exome sequencing for disease gene identification.
        Biochim Biophys Acta. 2014; 1840: 1355-1359
        • Pronicka E.
        • Piekutowska-Abramczuk D.
        • Ciara E.
        • et al.
        New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre.
        J Transl Med. 2016; 14: 174
        • Wortmann S.B.
        • Koolen D.A.
        • Smeitink J.A.
        • et al.
        Whole exome sequencing of suspected mitochondrial patients in clinical practice.
        J Inherit Metab Dis. 2015; 38: 437-443
        • Haack T.B.
        • Danhauser K.
        • Haberberger B.
        • et al.
        Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency.
        Nat Genet. 2010; 42: 1131-1134
        • Neveling K.
        • Feenstra I.
        • Gilissen C.
        • et al.
        A post-hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases.
        Hum Mutat. 2013; 34: 1721-1726
        • Kremer L.
        • Bader D.
        • Mertes C.
        • et al.
        Genetic diagnosis of Mendelian disorders via RNA sequencing.
        Nat Commun. 2017; 8: 15824
        • Cummings B.B.
        • Marshall J.L.
        • Tukiainen T.
        • et al.
        Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
        Sci Transl Med. 2017; 9: eaal5209
        • Clark M.M.
        • Hildreth A.
        • Batalov S.
        • et al.
        Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation.
        Sci Transl Med. 2019; 11 ([pii:eaat6177])
        • Ruiz-Pesini E.
        • Lott M.T.
        • Procaccio V.
        • et al.
        An enhanced MITOMAP with a global mtDNA mutational phylogeny.
        Nucleic Acids Res. 2007; 35: D823-D828
        • Clima R.
        • Preste R.
        • Calabrese C.
        • et al.
        HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor.
        Nucleic Acids Res. 2017; 45: D698-D706
        • Preste R.
        • Vitale O.
        • Clima R.
        • et al.
        HmtVar: a new resource for human mitochondrial variations and pathogenicity data.
        Nucleic Acids Res. 2019; 47: D1202-D1210
        • Shen L.
        • Diroma M.A.
        • Gonzalez M.
        • et al.
        MSeqDR: a centralized knowledge repository and bioinformatics web resource to facilitate genomic investigations in mitochondrial disease.
        Hum Mutat. 2016; 37: 540-548
        • Shen L.
        • Attimonelli M.
        • Bai R.
        • et al.
        MSeqDR mvTool: a mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.
        Hum Mutat. 2018; 39: 806-810
        • Ding J.
        • Sidore C.
        • Butler T.J.
        • et al.
        Assessing mitochondrial DNA Variation and copy number in lymphocytes of ∼2,000 Sardinians using tailored sequencing analysis tools.
        PLoS Genet. 2015; 11: e1005306
        • Tadaka S.
        • Katsuoka F.
        • Ueki M.
        • et al.
        3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome.
        Hum Genome Var. 2019; 6: 28
        • Glusman G.
        • Caballero J.
        • Mauldin D.E.
        • et al.
        Kaviar: an accessible system for testing SNV novelty.
        Bioinformatics. 2011; 27: 3216-3217
        • Ghosh R.
        • Oak N.
        • Plon S.E.
        Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines.
        Genome Biol. 2017; 18: 225
        • Bris C.
        • Goudenege D.
        • Desquiret-Dumas V.
        • et al.
        Bioinformatics tools and databases to assess the pathogenicity of mitochondrial DNA variants in the field of next generation.
        Front Genet. 2018; 9: 632
        • Castellana S.
        • Rónai J.
        • Mazza T.
        MitImpact: an exhaustive collection of pre-computed pathogenicity predictions of human mitochondrial non-synonymous variants.
        Hum Mutat. 2015; 36: E2413-E2422
        • Calabrese C.
        • Simone D.
        • Diroma M.A.
        • et al.
        MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing.
        Bioinformatics. 2014; 30: 3115-3117
        • Castellana S.
        • Fusilli C.
        • Mazzoccoli G.
        • et al.
        High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE.
        PLoS Comput Biol. 2017; 13: e1005628
        • Martin-Navarro A.
        • Gaudioso-Simon A.
        • Alvarez-Jarreta J.
        • et al.
        Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.
        BMC Bioinformatics. 2017; 18: 158
        • Sonney S.
        • Leipzig J.
        • Lott M.T.
        • et al.
        Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP.
        PLoS Comput Biol. 2017; 13: e1005867
        • Niroula A.
        • Vihinen M.
        PON-mt-tRNA: a multifactorial probability-based method for classification of mitochondrial tRNA variations.
        Nucleic Acids Res. 2016; 44: 2020-2027
        • Elson J.L.
        • Smith P.M.
        • Greaves L.C.
        • et al.
        The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease.
        Mitochondrion. 2015; 25: 17-27
        • Smith P.M.
        • Elson J.L.
        • Greaves L.C.
        • et al.
        The role of the mitochondrial ribosome in human disease: searching for mutations in 12S mitochondrial rRNA with high disruptive potential.
        Hum Mol Genet. 2014; 23: 949-967
        • Gorman G.S.
        • Chinnery P.F.
        • DiMauro S.
        • et al.
        Mitochondrial diseases.
        Nat Rev Dis Primers. 2016; 2: 16080
        • Picard M.
        • Zhang J.
        • Hancock S.
        • et al.
        Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming.
        Proc Natl Acad Sci U S A. 2014; 111: E4033-E4042
        • Kopinski P.K.
        • Janssen K.A.
        • Schaefer P.M.
        • et al.
        Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy.
        Proc Natl Acad Sci U S A. 2019; 116: 16028-16035
        • Schmitt M.W.
        • Kennedy S.R.
        • Salk J.J.
        • et al.
        Detection of ultra-rare mutations by next-generation sequencing.
        Proc Natl Acad Sci U S A. 2012; 109: 14508-14513
        • Ahn E.H.
        • Hirohata K.
        • Kohrn B.F.
        • et al.
        Detection of ultra-rare mitochondrial mutations in breast stem cells by duplex sequencing.
        PLoS One. 2015; 10: e0136216
        • Weissensteiner H.
        • Forer L.
        • Fuchsberger C.
        • et al.
        mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.
        Nucleic Acids Res. 2016; 44: W64-W69
        • Guo Y.
        • Li C.-I.
        • Sheng Q.
        • et al.
        Very low-level heteroplasmy mtDNA variations are inherited in humans.
        J Genet Genomics. 2013; 40: 607-615
        • Ishiya K.
        • Ueda S.
        MitoSuite: a graphical tool for human mitochondrial genome profiling in massive parallel sequencing.
        PeerJ. 2017; 5: e3406
        • Grady J.P.
        • Pickett S.J.
        • Ng Y.S.
        • et al.
        mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease.
        EMBO Mol Med. 2018; 10: e8262
        • Genasetti A.
        • Valentino M.L.
        • Carelli V.
        • et al.
        Assessing heteroplasmic load in Leber's hereditary optic neuropathy mutation 3460G->A/MT-ND1 with a real-time PCR quantitative approach.
        J Mol Diagn. 2007; 9: 538-545
        • Hudson G.
        • Nalls M.
        • Evans J.R.
        • et al.
        Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease.
        Neurology. 2013; 80: 2042-2048
        • Navarro-Gomez D.
        • Leipzig J.
        • Shen L.
        • et al.
        Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier.
        Bioinformatics. 2015; 31: 1310-1312
        • Weissensteiner H.
        • Pacher D.
        • Kloss-Brandstatter A.
        • et al.
        HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing.
        Nucleic Acids Res. 2016; 44: W58-W63
        • van Oven M.
        • Kayser M.
        Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation.
        Hum Mutat. 2009; 30: E386-E394
        • Fan L.
        • Yao Y.G.
        MitoTool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations.
        Mitochondrion. 2011; 11: 351-356
        • Brown M.D.
        • Torroni A.
        • Reckord C.L.
        • et al.
        Phylogenetic analysis of Leber's hereditary optic neuropathy mitochondrial DNA's indicates multiple independent occurrences of the common mutations.
        Hum Mutat. 1995; 6: 311-325
        • Wei W.
        • Gomez-Duran A.
        • Hudson G.
        • et al.
        Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations.
        PLoS Genet. 2017; 13: e1007126
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular Pathology.
        Genet Med. 2015; 17: 405-423
        • Köhler S.
        • Carmody L.
        • Vasilevsky N.
        • et al.
        Expansion of the human phenotype ontology (HPO) knowledge base and resources.
        Nucleic Acids Res. 2019; 47: D1018-D1027
        • Hamosh A.
        • Scott A.F.
        • Amberger J.S.
        • et al.
        Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders.
        Nucleic Acids Res. 2015; 33: D514-D517
        • Davis A.P.
        • Grondin C.J.
        • Lennon-Hopkins K.
        • et al.
        The comparative toxicogenomics database's 10th year anniversary: update 2015.
        Nucleic Acids Res. 2015; 43: D914-D920
        • Mungall C.J.
        • McMurry J.A.
        • Köhler S.
        • et al.
        The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species.
        Nucleic Acids Res. 2017; 45: D712-D722
        • Landrum M.J.
        • Lee J.M.
        • Riley G.R.
        • et al.
        ClinVar: public archive of relationships among sequence variation and human phenotype.
        Nucleic Acids Res. 2014; 42: D980-D985
        • Piñero J.
        • Bravo À.
        • Queralt-Rosinach N.
        • et al.
        A comprehensive platform integrating information on human disease-associated genes and variants.
        Nucleic Acids Res. 2017; 45: D833-D839
        • Smedley D.
        • Jacobsen J.O.
        • Jäger M.
        • et al.
        Next-generation diagnostics and disease-gene discovery with the Exomiser.
        Nat Protoc. 2015; 10: 2004-2015
        • Liu X.
        • Wu C.
        • Li C.
        • et al.
        dbNSFP v3.0: a one-stop database of functional predictions and annotations for human non-synonymous and splice site SNVs.
        Hum Mutat. 2016; 37: 235-241
      1. Karczewski KJ, Francioli LC, Grace T, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 531210. https://doi.org/10.1101/531210.