Advertisement
Review Article| Volume 40, ISSUE 2, P113-119, June 2020

Enhancing Diagnosis Through RNA Sequencing

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yang Y.
        • Muzny D.M.
        • Xia F.
        • et al.
        Molecular findings among patients referred for clinical whole-exome sequencing.
        JAMA. 2014; 312: 1870-1879
        • Posey J.E.
        • Rosenfeld J.A.
        • James R.A.
        • et al.
        Molecular diagnostic experience of whole-exome sequencing in adult patients.
        Genet Med. 2016; 18: 678-685
        • Kohlmann W.
        • Gruber S.B.
        Lynch syndrome.
        (Available at:)
        • Kremer L.S.
        • Bader D.M.
        • Mertes C.
        • et al.
        Genetic diagnosis of Mendelian disorders via RNA sequencing.
        Nat Commun. 2017; 8: 1-11
        • Scotti M.M.
        • Swanson M.S.
        RNA mis-splicing in disease.
        Nat Rev Genet. 2016; 17: 19-32
        • Anna A.
        • Monika G.
        Splicing mutations in human genetic disorders: examples, detection, and confirmation.
        J Appl Genet. 2018; 59: 253-268
        • Darras B.T.
        • Urion D.K.
        • Ghosh P.S.
        Dystrophinopathies.
        (Available at:)
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Vaz-Drago R.
        • Custódio N.
        • Carmo-Fonseca M.
        Deep intronic mutations and human disease.
        Hum Genet. 2017; 136: 1093-1111
        • Eriksson M.
        • Brown W.T.
        • Gordon L.B.
        • et al.
        Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome.
        Nature. 2003; 423: 293-298
        • Liu W.
        • Qian C.
        • Francke U.
        Silent mutation induces exon skipping of fibrillin-1 gene in Marfan syndrome.
        Nat Genet. 1997; 16: 328-329
        • Pérez-Cabornero L.
        • Infante M.
        • Velasco E.
        • et al.
        Evaluating the effect of unclassified variants identified in MMR genes using phenotypic features, bioinformatics prediction, and RNA assays.
        J Mol Diagn. 2013; 15: 380-390
        • Frésard L.
        • Smai C.
        • Ferraro N.M.
        • et al.
        Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.
        Nat Med. 2019; 25: 911-919
        • Cartegni L.
        • Wang J.
        • Zhu Z.
        • et al.
        ESEfinder: a web resource to identify exonic splicing enhancers.
        Nucleic Acids Res. 2003; 31: 3568-3571
        • Yeo G.
        • Burge C.B.
        Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals.
        J Comput Biol. 2004; 11: 377-394
        • Desmet F.-O.
        • Hamroun D.
        • Lalande M.
        • et al.
        Human splicing finder: an online bioinformatics tool to predict splicing signals.
        Nucleic Acids Res. 2009; 37: e67
        • Karam R.
        • Conner B.
        • LaDuca H.
        • et al.
        Assessment of diagnostic outcomes of RNA genetic testing for hereditary cancer.
        JAMA Netw Open. 2019; 2: e1913900
        • Jaganathan K.
        • Kyriazopoulou Panagiotopoulou S.
        • McRae J.F.
        • et al.
        Predicting splicing from primary sequence with deep learning.
        Cell. 2019; 176: 535-548.e24
        • Lee H.
        • Huang A.Y.
        • Wang L.-K.
        • et al.
        Diagnostic utility of transcriptome sequencing for rare Mendelian diseases.
        Genet Med. 2019; https://doi.org/10.1038/s41436-019-0672-1
        • LaDuca H.
        • Stuenkel A.J.
        • Dolinsky J.S.
        • et al.
        Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients.
        Genet Med. 2014; 16: 830-837
        • Tung N.
        • Lin N.U.
        • Kidd J.
        • et al.
        Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer.
        J Clin Oncol. 2016; 34: 1460-1468
        • Wong E.K.
        • Bartels K.
        • Hathaway J.
        • et al.
        Perceptions of genetic variant reclassification in patients with inherited cardiac disease.
        Eur J Hum Genet. 2019; 27: 1134-1142
        • Caswell-Jin J.L.
        • Gupta T.
        • Hall E.
        • et al.
        Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk.
        Genet Med. 2018; 20: 234-239
        • Cummings B.B.
        • Marshall J.L.
        • Tukiainen T.
        • et al.
        Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
        Sci Transl Med. 2017; 9: 1-25
        • GTEx Consortium
        The Genotype-Tissue Expression (GTEx) project.
        Nat Genet. 2013; 45: 580-585
        • Gonorazky H.D.
        • Naumenko S.
        • Ramani A.K.
        • et al.
        Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease.
        Am J Hum Genet. 2019; 104: 466-483
        • Tsunemoto R.K.
        • Eade K.T.
        • Blanchard J.W.
        • et al.
        Forward engineering neuronal diversity using direct reprogramming.
        EMBO J. 2015; 34: 1445-1455