Advertisement
Review Article| Volume 39, ISSUE 3, P473-485, September 2019

What the Clinical Microbiologist Should Know About Pharmacokinetics/Pharmacodynamics in the Era of Emerging Multidrug Resistance

Focusing on β-Lactam/β-Lactamase Inhibitor Combinations
  • Henrietta Abodakpi
    Affiliations
    Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
    Search for articles by this author
  • Audrey Wanger
    Affiliations
    Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin, Houston, Texas 77030, USA
    Search for articles by this author
  • Vincent H. Tam
    Correspondence
    Corresponding author. Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX 77204.
    Affiliations
    Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA

    Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX 77204, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Centers for Disease Control and Prevention
        Antibiotic resistance threats in the United States, 2013.
        (Available at:) (Accessed October 24, 2018)
        • Slama T.G.
        Gram-negative antibiotic resistance: there is a price to pay.
        Crit Care. 2008; 12: S4
        • Cerceo E.
        • Deitelzweig S.B.
        • Sherman B.M.
        • et al.
        Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options.
        Microb Drug Resist. 2016; 22: 412-431
        • Tam V.H.
        • Rogers C.A.
        • Chang K.-T.
        • et al.
        Impact of multidrug-resistant pseudomonas aeruginosa bacteremia on patient outcomes.
        Antimicrob Agents Chemother. 2010; 54: 3717-3722
        • Mauldin P.D.
        • Salgado C.D.
        • Hansen I.S.
        • et al.
        Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria.
        Antimicrob Agents Chemother. 2010; 54: 109-115
        • Ibrahim E.H.
        • Sherman G.
        • Ward S.
        • et al.
        The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting.
        Chest. 2000; 118: 146-155
        • Kollef M.H.
        • Sherman G.
        • Ward S.
        • et al.
        Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients.
        Chest. 1999; 115: 462-474
        • Adler A.
        • Katz D.E.
        • Marchaim D.
        The continuing plague of extended-spectrum beta-lactamase-producing enterobacteriaceae infections.
        Infect Dis Clin North Am. 2016; 30: 347-375
        • Paterson D.L.
        Resistance in gram-negative bacteria: enterobacteriaceae.
        Am J Med. 2006; 119 ([discussion: S62–70]): S20-S28
        • Ruppe E.
        • Woerther P.L.
        • Barbier F.
        Mechanisms of antimicrobial resistance in gram-negative bacilli.
        Ann Intensive Care. 2015; 5: 61
        • Castanheira M.
        • Farrell S.E.
        • Deshpande L.M.
        • et al.
        Prevalence of β-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY antimicrobial surveillance program (2010).
        Antimicrob Agents Chemother. 2013; 57: 3012-3020
        • Castanheira M.
        • Farrell S.E.
        • Krause K.M.
        • et al.
        Contemporary diversity of β-lactamases among enterobacteriaceae in the nine U.S. Census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent β-lactamase groups.
        Antimicrob Agents Chemother. 2014; 58: 833-838
        • Nordmann P.
        • Naas T.
        • Poirel L.
        Global spread of carbapenemase-producing enterobacteriaceae.
        Emerg Infect Dis. 2011; 17: 1791-1798
        • Bush K.
        Bench-to-bedside review: the role of β-lactamases in antibiotic-resistant gram-negative infections.
        Crit Care. 2010; 14: 224
        • Bush K.
        • Jacoby G.A.
        Updated functional classification of β-lactamases.
        Antimicrob Agents Chemother. 2010; 54: 969-976
        • Bush K.
        Beta-lactamase inhibitors from laboratory to clinic.
        Clin Microbiol Rev. 1988; 1: 109-123
        • Wright A.J.
        The penicillins.
        Mayo Clin Proc. 1999; 74: 290-307
        • Drawz S.M.
        • Bonomo R.A.
        Three decades of beta-lactamase inhibitors.
        Clin Microbiol Rev. 2010; 23: 160-201
        • Bush K.
        A resurgence of beta-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens.
        Int J Antimicrob Agents. 2015; 46: 483-493
        • Drawz S.M.
        • Papp-Wallace K.M.
        • Bonomo R.A.
        New beta-lactamase inhibitors: a therapeutic renaissance in an MDR world.
        Antimicrob Agents Chemother. 2014; 58: 1835-1846
        • Wong D.
        • van Duin D.
        Novel beta-lactamase inhibitors: unlocking their potential in therapy.
        Drugs. 2017; 77: 615-628
        • Sader H.S.
        • Castanheira M.
        • Huband M.
        • et al.
        WCK 5222 (Cefepime-Zidebactam) antimicrobial activity against clinical isolates of gram-negative bacteria collected worldwide in 2015.
        Antimicrob Agents Chemother. 2017; 61 ([pii:e00072-17])
        • Moya B.
        • Barcelo I.M.
        • Bhagwat S.
        • et al.
        Potent β-lactam enhancer activity of zidebactam and WCK 5153 against Acinetobacter baumannii, including carbapenemase-producing clinical isolates.
        Antimicrob Agents Chemother. 2017; 61 ([pii:e01238-17])
        • Rodriguez-Bano J.
        • Navarro M.D.
        • Retamar P.
        • et al.
        • Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group
        β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts.
        Clin Infect Dis. 2012; 54: 167-174
        • Harris P.N.
        • Yin M.
        • Jureen R.
        • et al.
        Comparable outcomes for beta-lactam/beta-lactamase inhibitor combinations and carbapenems in definitive treatment of bloodstream infections caused by cefotaxime-resistant Escherichia coli or Klebsiella pneumoniae.
        Antimicrob Resist Infect Control. 2015; 4: 14
        • Tamma P.D.
        • Han J.H.
        • Rock C.
        • et al.
        Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia.
        Clin Infect Dis. 2015; 60: 1319-1325
        • Gutiérrez-Gutiérrez B.
        • Perez-Galera S.
        • Salamanca E.
        • et al.
        A multinational, preregistered cohort study of beta-lactam/beta-lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-beta-lactamase-producing enterobacteriaceae.
        Antimicrob Agents Chemother. 2016; 60: 4159-4169
        • Ofer-Friedman H.
        • Shefler C.
        • Sharma S.
        • et al.
        Carbapenems versus piperacillin-tazobactam for bloodstream infections of nonurinary source caused by extended-spectrum beta-lactamase-producing enterobacteriaceae.
        Infect Control Hosp Epidemiol. 2015; 36: 981-985
        • Ng T.M.
        • Khong W.X.
        • Harris P.N.A.
        • et al.
        Empiric piperacillin-tazobactam versus carbapenems in the treatment of bacteraemia due to extended-spectrum beta-lactamase-producing enterobacteriaceae.
        PLoS One. 2016; 11: e0153696
        • Harris P.N.A.
        • Tambyah P.A.
        • Lye D.C.
        • et al.
        Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial.
        JAMA. 2018; 320: 984-994
        • Humphries R.M.
        • Yang S.
        • Hemarajata P.
        • et al.
        First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate.
        Antimicrob Agents Chemother. 2015; 59: 6605-6607
        • Shields R.K.
        • Chen L.
        • Cheng S.
        • et al.
        Emergence of ceftazidime-avibactam resistance due to Plasmid-Borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections.
        Antimicrob Agents Chemother. 2017; 61 ([pii:e02097-16])
        • Giddins M.J.
        • Macesic N.
        • Annavajhala M.K.
        • et al.
        Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates.
        Antimicrob Agents Chemother. 2018; 62 ([pii:e02101-17])
        • Thomson C.J.
        • Miles R.S.
        • Amyes S.G.
        Susceptibility testing with clavulanic acid: fixed concentration versus fixed ratio.
        Antimicrob Agents Chemother. 1995; 39: 2591-2592
        • Pfaller M.A.
        • Barry A.L.
        • Fuchs P.C.
        • et al.
        Comparison of fixed concentration and fixed ratio options for dilution susceptibility testing of gram-negative bacilli to ampicillin and ampicillin/sulbactam.
        Eur J Clin Microbiol Infect Dis. 1993; 12: 356-362
        • Abodakpi H.
        • Chang K.-T.
        • Gao S.
        • et al.
        Optimal piperacillin-tazobactam dosing strategies against extended-spectrum-β-lactamase-producing enterobacteriaceae.
        Antimicrob Agents Chemother. 2019; 63 ([pii:e01906-18])
        • Abodakpi H.
        • Chang K.T.
        • Zhou J.
        • et al.
        A novel framework to compare the effectiveness of beta-lactamase inhibitors against extended-spectrum beta-lactamase-producing Enterobacteriaceae.
        Clin Microbiol Infect. 2019; ([Epub ahead of print])
        • Nicasio A.M.
        • VanScoy B.D.
        • Mendes R.E.
        • et al.
        Pharmacokinetics-pharmacodynamics of tazobactam in combination with piperacillin in an in vitro infection model.
        Antimicrob Agents Chemother. 2016; 60: 2075-2080
        • Bhagunde P.
        • Chang K.T.
        • Hirsch E.B.
        • et al.
        Novel modeling framework to guide design of optimal dosing strategies for beta-lactamase inhibitors.
        Antimicrob Agents Chemother. 2012; 56: 2237-2240