Advertisement
Review Article| Volume 39, ISSUE 3, P405-418, September 2019

Next-Generation Sequencing in Clinical Microbiology

Are We There Yet?

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gu W.
        • Miller S.
        • Chiu C.Y.
        Clinical metagenomic next-generation sequencing for pathogen detection.
        Annu Rev Pathol. 2019; 14: 319-338
        • Weterings V.
        • Zhou K.
        • Rossen J.W.
        • et al.
        An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in The Netherlands (July to December 2013), with inter-institutional spread.
        Eur J Clin Microbiol Infect Dis. 2015; 34: 1647-1655
        • Zhou K.
        • Lokate M.
        • Deurenberg R.H.
        • et al.
        Characterization of a CTX-M-15 producing Klebsiella pneumoniae outbreak strain assigned to a novel sequence type (1427).
        Front Microbiol. 2015; 6: 1250
        • Tamma P.D.
        • Fan Y.
        • Bergman Y.
        • et al.
        Applying rapid whole-genome sequencing to predict phenotypic antimicrobial susceptibility testing results among carbapenem-resistant Klebsiella pneumoniae clinical isolates.
        Antimicrob Agents Chemother. 2019; 63 ([pii:e01923-18])
        • Wilson M.R.
        • Naccache S.N.
        • Samayoa E.
        • et al.
        Actionable diagnosis of neuroleptospirosis by next-generation sequencing.
        N Engl J Med. 2014; 370: 2408-2417
        • Brown A.C.
        • Bryant J.M.
        • Einer-Jensen K.
        • et al.
        Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples.
        J Clin Microbiol. 2015; 53: 2230-2237
        • Votintseva A.A.
        • Bradley P.
        • Pankhurst L.
        • et al.
        Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples.
        J Clin Microbiol. 2017; 55: 1285-1298
        • Nimmo C.
        • Doyle R.
        • Burgess C.
        • et al.
        Rapid identification of a Mycobacterium tuberculosis full genetic drug resistance profile through whole genome sequencing directly from sputum.
        Int J Infect Dis. 2017; 62: 44-46
        • Sammons J.S.
        • Graf E.H.
        • Townsend S.
        • et al.
        Outbreak of adenovirus in a neonatal intensive care unit: critical importance of equipment cleaning during inpatient ophthalmologic examinations.
        Ophthalmology. 2019; 126: 137-143
        • Grad Y.H.
        • Lipsitch M.
        • Feldgarden M.
        • et al.
        Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011.
        Proc Natl Acad Sci U S A. 2012; 109: 3065-3070
        • Jackson B.R.
        • Tarr C.
        • Strain E.
        • et al.
        Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation.
        Clin Infect Dis. 2016; 63: 380-386
        • Prevention CfDCa
        Antibiotic/antimicrobial resistance 2019.
        (Available at:) (Accessed January 3, 2019)
        • Eyre D.W.
        • Cule M.L.
        • Wilson D.J.
        • et al.
        Diverse sources of C. difficile infection identified on whole-genome sequencing.
        N Engl J Med. 2013; 369: 1195-1205
        • Etienne K.A.
        • Roe C.C.
        • Smith R.M.
        • et al.
        Whole-genome sequencing to determine origin of multinational outbreak of Sarocladium kiliense bloodstream infections.
        Emerg Infect Dis. 2016; 22: 476-481
        • Leopold S.R.
        • Goering R.V.
        • Witten A.
        • et al.
        Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes.
        J Clin Microbiol. 2014; 52: 2365-2370
        • Safi H.
        • Lingaraju S.
        • Amin A.
        • et al.
        Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes.
        Nat Genet. 2013; 45: 1190-1197
        • Power R.A.
        • Davaniah S.
        • Derache A.
        • et al.
        Genome-wide association study of HIV whole genome sequences validated using drug resistance.
        PLoS One. 2016; 11: e0163746
        • Tzou P.L.
        • Ariyaratne P.
        • Varghese V.
        • et al.
        Comparison of an in vitro diagnostic next-generation sequencing assay with Sanger sequencing for HIV-1 genotypic resistance testing.
        J Clin Microbiol. 2018; 56 ([pii:e00105-18])
        • Tyson G.H.
        • McDermott P.F.
        • Li C.
        • et al.
        WGS accurately predicts antimicrobial resistance in Escherichia coli.
        J Antimicrob Chemother. 2015; 70: 2763-2769
        • Martin J.
        • Phan H.T.T.
        • Findlay J.
        • et al.
        Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission.
        J Antimicrob Chemother. 2017; 72: 3025-3034
        • Nguyen M.
        • Brettin T.
        • Long S.W.
        • et al.
        Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae.
        Sci Rep. 2018; 8: 421
        • Jaillard M.
        • van Belkum A.
        • Cady K.C.
        • et al.
        Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa.
        Int J Antimicrob Agents. 2017; 50: 210-218
        • Mason A.
        • Foster D.
        • Bradley P.
        • et al.
        Accuracy of different bioinformatics methods in detecting antibiotic resistance and virulence factors from Staphylococcus aureus whole-genome sequences.
        J Clin Microbiol. 2018; 56 ([pii:e01815-17])
        • Eyre D.W.
        • De Silva D.
        • Cole K.
        • et al.
        WGS to predict antibiotic MICs for Neisseria gonorrhoeae.
        J Antimicrob Chemother. 2017; 72: 1937-1947
        • Nguyen M.
        • Long S.W.
        • McDermott P.F.
        • et al.
        Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella.
        J Clin Microbiol. 2019; 57 ([pii:e01260-18])
        • Quan T.P.
        • Bawa Z.
        • Foster D.
        • et al.
        Evaluation of whole-genome sequencing for mycobacterial species identification and drug susceptibility testing in a clinical setting: a large-scale prospective assessment of performance against line probe assays and phenotyping.
        J Clin Microbiol. 2018; 56 ([pii:e01480-17])
        • Walker T.M.
        • Kohl T.A.
        • Omar S.V.
        • et al.
        Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study.
        Lancet Infect Dis. 2015; 15: 1193-1202
        • Bradley P.
        • Gordon N.C.
        • Walker T.M.
        • et al.
        Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.
        Nat Commun. 2015; 6: 10063
        • Ellington M.J.
        • Ekelund O.
        • Aarestrup F.M.
        • et al.
        The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee.
        Clin Microbiol Infect. 2017; 23: 2-22
        • Deurenberg R.H.
        • Bathoorn E.
        • Chlebowicz M.A.
        • et al.
        Application of next generation sequencing in clinical microbiology and infection prevention.
        J Biotechnol. 2017; 243: 16-24
        • Rhoads D.D.
        Lowering the barriers to routine whole-genome sequencing of bacteria in the clinical microbiology laboratory.
        J Clin Microbiol. 2018; 56 ([pii:e00813-18])
        • Kos V.N.
        • Deraspe M.
        • McLaughlin R.E.
        • et al.
        The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility.
        Antimicrob Agents Chemother. 2015; 59: 427-436
        • Lemon J.K.
        • Khil P.P.
        • Frank K.M.
        • et al.
        Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates.
        J Clin Microbiol. 2017; 55: 3530-3543
        • Gordon N.C.
        • Price J.R.
        • Cole K.
        • et al.
        Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing.
        J Clin Microbiol. 2014; 52: 1182-1191
        • Salipante S.J.
        • Hoogestraat D.R.
        • Abbott A.N.
        • et al.
        Coinfection of Fusobacterium nucleatum and Actinomyces israelii in mastoiditis diagnosed by next-generation DNA sequencing.
        J Clin Microbiol. 2014; 52: 1789-1792
        • Gu W.
        • Crawford E.D.
        • O'Donovan B.D.
        • et al.
        Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications.
        Genome Biol. 2016; 17: 41
        • Schlaberg R.
        • Chiu C.Y.
        • Miller S.
        • et al.
        Validation of metagenomic next-generation sequencing tests for universal pathogen detection.
        Arch Pathol Lab Med. 2017; 141: 776-786
        • Salipante S.J.
        • Sengupta D.J.
        • Cummings L.A.
        • et al.
        Whole genome sequencing indicates Corynebacterium jeikeium comprises 4 separate genomospecies and identifies a dominant genomospecies among clinical isolates.
        Int J Med Microbiol. 2014; 304: 1001-1010
        • Davidson R.M.
        • Epperson L.E.
        Microbiome sequencing methods for studying human diseases.
        Methods Mol Biol. 2018; 1706: 77-90
        • Sabat A.J.
        • van Zanten E.
        • Akkerboom V.
        • et al.
        Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification---increased discrimination of closely related species.
        Sci Rep. 2017; 7: 3434
        • Briese T.
        • Kapoor A.
        • Mishra N.
        • et al.
        Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis.
        MBio. 2015; 6 (e01491-15)
        • Allicock O.M.
        • Guo C.
        • Uhlemann A.C.
        • et al.
        BacCapSeq: a platform for diagnosis and characterization of bacterial infections.
        MBio. 2018; 9 ([pii:e02007-18])
        • Williams S.H.
        • Cordey S.
        • Bhuva N.
        • et al.
        Investigation of the plasma virome from cases of unexplained febrile illness in Tanzania from 2013 to 2014: a comparative analysis between unbiased and VirCapSeq-VERT high-throughput sequencing approaches.
        mSphere. 2018; 3 ([pii:e00311-18])
        • Sahoo M.K.
        • Lefterova M.I.
        • Yamamoto F.
        • et al.
        Detection of cytomegalovirus drug resistance mutations by next-generation sequencing.
        J Clin Microbiol. 2013; 51: 3700-3710
        • Blauwkamp T.A.
        • Thair S.
        • Rosen M.J.
        • et al.
        Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease.
        Nat Microbiol. 2019; 4: 663-674
        • Simner P.J.
        • Miller H.B.
        • Breitwieser F.P.
        • et al.
        Development and optimization of metagenomic next-generation sequencing methods for cerebrospinal fluid diagnostics.
        J Clin Microbiol. 2018; 56 ([pii:e00472-18])
        • Salzberg S.L.
        • Breitwieser F.P.
        • Kumar A.
        • et al.
        Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system.
        Neurol Neuroimmunol Neuroinflamm. 2016; 3: e251
        • Wilson M.R.
        • O'Donovan B.D.
        • Gelfand J.M.
        • et al.
        Chronic meningitis investigated via metagenomic next-generation sequencing.
        JAMA Neurol. 2018; 75: 947-955
        • Pendleton K.M.
        • Erb-Downward J.R.
        • Bao Y.
        • et al.
        Rapid pathogen identification in bacterial pneumonia using real-time metagenomics.
        Am J Respir Crit Care Med. 2017; 196: 1610-1612
        • Zhou Y.
        • Wylie K.M.
        • El Feghaly R.E.
        • et al.
        Metagenomic approach for identification of the pathogens associated with diarrhea in stool specimens.
        J Clin Microbiol. 2016; 54: 368-375
        • Ivy M.I.
        • Thoendel M.J.
        • Jeraldo P.R.
        • et al.
        Direct detection and identification of prosthetic joint infection pathogens in synovial fluid by metagenomic shotgun sequencing.
        J Clin Microbiol. 2018; 56 ([pii:e00402-18])
        • Thoendel M.J.
        • Jeraldo P.R.
        • Greenwood-Quaintance K.E.
        • et al.
        Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach.
        Clin Infect Dis. 2018; 67: 1333-1338
        • Burnham P.
        • Dadhania D.
        • Heyang M.
        • et al.
        Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract.
        Nat Commun. 2018; 9: 2412
        • Li Z.
        • Breitwieser F.P.
        • Lu J.
        • et al.
        Identifying corneal infections in formalin-fixed specimens using next generation sequencing.
        Invest Ophthalmol Vis Sci. 2018; 59: 280-288
        • Miao Q.
        • Ma Y.
        • Wang Q.
        • et al.
        Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice.
        Clin Infect Dis. 2018; 67: S231-S240
        • Hoffmann B.
        • Tappe D.
        • Hoper D.
        • et al.
        A variegated squirrel bornavirus associated with fatal human encephalitis.
        N Engl J Med. 2015; 373: 154-162
        • Wilson M.R.
        • Suan D.
        • Duggins A.
        • et al.
        A novel cause of chronic viral meningoencephalitis: Cache Valley virus.
        Ann Neurol. 2017; 82: 105-114
        • Thoendel M.
        • Jeraldo P.R.
        • Greenwood-Quaintance K.E.
        • et al.
        Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.
        J Microbiol Methods. 2016; 127: 141-145
        • Salter S.J.
        • Cox M.J.
        • Turek E.M.
        • et al.
        Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.
        BMC Biol. 2014; 12: 87
        • Abril M.K.
        • Barnett A.S.
        • Wegermann K.
        • et al.
        Diagnosis of Capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing.
        Open Forum Infect Dis. 2016; 3: ofw144
        • Greninger A.L.
        The challenge of diagnostic metagenomics.
        Expert Rev Mol Diagn. 2018; 18: 605-615
        • Swaminathan S.
        • Schlaberg R.
        • Lewis J.
        • et al.
        Fatal Zika virus infection with secondary nonsexual transmission.
        N Engl J Med. 2016; 375: 1907-1909
        • Yan Q.
        • Wi Y.M.
        • Thoendel M.J.
        • et al.
        Evaluation of the CosmosID bioinformatics platform for prosthetic joint-associated sonicate fluid shotgun metagenomic data analysis.
        J Clin Microbiol. 2019; 57 ([pii:e01182-18])
        • Langelier C.
        • Kalantar K.L.
        • Moazed F.
        • et al.
        Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults.
        Proc Natl Acad Sci U S A. 2018; 115: E12353-E12362
        • Simner P.J.
        • Miller S.
        • Carroll K.C.
        Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases.
        Clin Infect Dis. 2018; 66: 778-788
        • Luscombe N.M.
        • Greenbaum D.
        • Gerstein M.
        What is bioinformatics? An introduction and overview.
        Yearb Med Inform. 2001; : 83-99
        • Roy S.
        • Coldren C.
        • Karunamurthy A.
        • et al.
        Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists.
        J Mol Diagn. 2018; 20: 4-27