Advertisement
Review Article| Volume 39, ISSUE 3, P371-389, September 2019

Total Laboratory Automation

What Is Gained, What Is Lost, and Who Can Afford It?
  • Richard B. Thomson Jr.
    Correspondence
    Corresponding author. Department of Pathology and Laboratory Medicine, NorthShore University Health System, 2650 Ridge Avenue, Evanston, IL 60045.
    Affiliations
    Department of Pathology and Laboratory Medicine, NorthShore University Health System, 2650 Ridge Avenue, Evanston, IL 60201, USA

    Department of Pathology and Laboratory Medicine, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
    Search for articles by this author
  • Erin McElvania
    Affiliations
    Department of Pathology and Laboratory Medicine, NorthShore University Health System, 2650 Ridge Avenue, Evanston, IL 60201, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bourbeau P.P.
        • Ledeboer N.A.
        Automation in clinical microbiology.
        J Clin Microbiol. 2013; 51: 1658-1665
        • Bailey A.
        • Ledeboer N.
        • Burnham C.-A.D.
        Clinical microbiology is growing up: the total laboratory automation revolution.
        Clin Chem. 2018; https://doi.org/10.1373/clinchem.2017.274522
        • Burckhardt I.
        Laboratory automation in clinical microbiology.
        Bioengineering (Basel). 2018; 5 ([pii:E102])
        • Novak S.M.
        • Marlowe E.M.
        Automation in the clinical microbiology laboratory.
        Clin Lab Med. 2013; 33: 567-588
        • Croxatto A.
        • Prod’hom G.
        • Faverjon F.
        • et al.
        Laboratory automation in clinical bacteriology: what system to choose?.
        Clin Microbiol Infect. 2016; 22: 217-235
        • Greub G.
        • Prod’hom G.
        Automation in clinical bacteriology: what system to choose?.
        Clin Microbiol Infect. 2011; 17: 655-660
        • Croxatto A.
        • Dijkstra K.
        • Prod’hom G.
        • et al.
        Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation.
        J Clin Microbiol. 2015; 53: 2298-2307
        • Burnham C.-A.D.
        • Dunne W.M.
        • Greub G.
        • et al.
        Automation in the clinical microbiology laboratory.
        Clin Chem. 2013; 59: 1696-1702
        • Garcia E.
        • Kundu I.
        • Ali A.
        • et al.
        The American Society for Clinical Pathology’s 2016-2017 vacancy survey of medical laboratories in the United States.
        Am J Clin Pathol. 2018; 149: 387-400
        • Dauwalder O.
        • Landrieve L.
        • Laurent F.
        • et al.
        Does bacteriology laboratory automation reduce time to results and increase quality management?.
        Clin Microbiol Infect. 2016; 22: 236-243
        • Mutters N.T.
        • Hodiamont C.J.
        • De Jong M.D.
        • et al.
        Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice.
        Ann Lab Med. 2014; 34: 111-117
        • Archetti C.
        • Montanelli A.
        • Finazzi D.
        • et al.
        Clinical laboratory automation: a case study.
        J Public Health Res. 2017; 6https://doi.org/10.4081/jphr.2017.881
        • Da Rin G.
        • Zoppelletto M.
        • Lippi G.
        Integration of diagnostic microbiology in a model of total laboratory automation.
        Lab Med. 2016; 47: 73-82
        • Croxatto A.
        • Marcelpoil R.
        • Orny C.
        • et al.
        Towards automated detection, semi-quantification and identification of microbial growth in clinical bacteriology: a proof of concept.
        Biomed J. 2017; 40: 317-328
        • Samuel L.
        • Novak-Weekley S.
        The role of the clinical laboratory in the future of health care: lean microbiology.
        J Clin Microbiol. 2014; 52: 1812-1817
        • Graham M.
        • Tilson L.
        • Streitberg R.
        • et al.
        Improved standardization and potential for shortened time to results with BD Kiestra total laboratory automation of early urine cultures: a prospective comparison with manual processing.
        Diagn Microbiol Infect Dis. 2016; 86: 1-4
        • Theparee T.
        • Das S.
        • Thomson R.B.
        Total laboratory automation and matrix-assisted laser desorption ionization-time of flight mass spectrometry improve turnaround times in the clinical microbiology laboratory: a retrospective analysis.
        J Clin Microbiol. 2018; 56 ([pii:e01242-17])
        • McAlearney A.S.
        • Hefner J.L.
        • Sieck C.J.
        • et al.
        The journey through grief: insights from a qualitative study of electronic health record implementation.
        Health Serv Res. 2015; 50: 462-488
        • Murray P.R.
        Laboratory automation: efficiency and turnaround times.
        Microbiol Aust. 2014; 35: 49
        • Quiblier C.
        • Jetter M.
        • Rominski M.
        • et al.
        Performance of Copan WASP for routine urine microbiology.
        J Clin Microbiol. 2016; 54 (Onderdonk AB, ed): 585-592
        • Iversen J.
        • Stendal G.
        • Gerdes C.M.
        • et al.
        Comparative evaluation of inoculation of urine samples with the Copan WASP and BD Kiestra InoqulA instruments.
        J Clin Microbiol. 2016; 54 (Ledeboer NA, ed): 328-332
        • Froment P.
        • Marchandin H.
        • Vande Perre P.
        • et al.
        Automated versus manual sample inoculations in routine clinical microbiology: a performance evaluation of the fully automated InoqulA instrument.
        J Clin Microbiol. 2014; 52: 796-802
        • Yarbrough M.L.
        • Lainhart W.
        • McMullen A.R.
        • et al.
        Impact of total laboratory automation on workflow and specimen processing time for culture of urine specimens.
        Eur J Clin Microbiol Infect Dis. 2018; 37: 2405-2411
        • Shrestha N.
        • Kukkonen-Harjula K.T.
        • Verbeek J.H.
        • et al.
        Workplace interventions for reducing sitting at work.
        Cochrane Database Syst Rev. 2018; (CD010912)https://doi.org/10.1002/14651858.CD010912.pub4
        • Hoe V.C.
        • Urquhart D.M.
        • Kelsall H.L.
        • et al.
        Ergonomic design and training for preventing work-related musculoskeletal disorders of the upper limb and neck in adults.
        Cochrane Database Syst Rev. 2012; (CD008570)https://doi.org/10.1002/14651858.CD008570.pub2
        • De Socio G.V.
        • Di Donato F.
        • Paggi R.
        • et al.
        Laboratory automation reduces time to report of positive blood cultures and improves management of patients with bloodstream infection.
        Eur J Clin Microbiol Infect Dis. 2018; 37: 2313-2322
        • Burckhardt I.
        • Last K.
        • Zimmermann S.
        Shorter incubation times for detecting multi-drug resistant bacteria in patient samples: defining early imaging time points using growth kinetics and total laboratory automation.
        Ann Lab Med. 2019; 39: 43-49
        • Curtoni A.
        • Cipriani R.
        • Marra E.S.
        • et al.
        Rapid identification of microorganisms from positive blood culture by MALDI-TOF MS after short-term incubation on solid medium.
        Curr Microbiol. 2017; 74: 97-102
        • Burckhardt I.
        • Horner S.
        • Burckhardt F.
        • et al.
        Detection of MRSA in nasal swabs: marked reduction of time to report for negative reports by substituting classical manual workflow with total lab automation.
        Eur J Clin Microbiol Infect Dis. 2018; 37: 1745-1751
        • Ledeboer N.A.
        • Dallas S.D.
        The automated clinical microbiology laboratory: fact or fantasy?.
        J Clin Microbiol. 2014; 52: 3140-3146
        • Rhoads D.D.
        • Novak S.M.
        • Pantanowitz L.
        A review of the current state of digital plate reading of cultures in clinical microbiology.
        J Pathol Inform. 2015; 6: 23
        • Lewis M.R.
        • Bryant R.J.
        Benchmarking and performance monitoring: what is appropriate for your laboratory?.
        in: Garcia L.S. Clinical laboratory management. 2nd edition. American Society of Microbiology, Washington, DC2014: 890-894https://doi.org/10.1128/9781555817282.ch50
        • O’Brien J.M.
        • Kumar A.
        • Metersky M.L.
        Does value-based purchasing enhance quality of care and patient outcomes in the ICU?.
        Crit Care Clin. 2013; 29: 91-112
        • Greatorex J.
        • Ellington M.J.
        • Koser C.U.
        • et al.
        New methods for identifying infectious diseases.
        Br Med Bull. 2014; 112: 27-35
        • Matthews S.
        • Deutekom J.
        The future of diagnostic bacteriology.
        Clin Microbiol Infect. 2011; 17: 651-654
        • Mascart G.
        • Martiny D.
        • Miendje Y.
        • et al.
        Automatisation en bactériologie: quel avenir ? Un exemple concret dans le cadre d’une consolidation de laboratoires universitaires.
        Ann Biol Clin (Paris). 2018; 76: 365-372