Advertisement
Review Article| Volume 39, ISSUE 3, P345-358, September 2019

When One Drug Is Not Enough

Context, Methodology, and Future Prospects in Antibacterial Synergy Testing

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Keshavjee S.
        • Farmer P.E.
        Tuberculosis, drug resistance, and the history of modern medicine.
        N Engl J Med. 2012; 367: 931-936
        • Hinshaw C.
        • Feldman W.H.
        • Pfuetze K.H.
        Treatment of tuberculosis with streptomycin; a summary of observations on one hundred cases.
        J Am Med Assoc. 1946; 132: 778-782
        • Daniel T.M.
        The history of tuberculosis.
        Respir Med. 2006; 100: 1862-1870
        • Crofton J.
        • Mitchison D.A.
        Streptomycin resistance in pulmonary tuberculosis.
        Br Med J. 1948; 11: 1009-1015
        • World Health Organization
        Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update.
        World Health Organization, Geneva2017 (Available at:)
        • Mcgrath M.
        • Gey van pittius N.C.
        • Van helden P.D.
        • et al.
        Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis.
        J Antimicrob Chemother. 2014; 69: 292-302
        • Gillespie S.H.
        Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective.
        Antimicrob Agents Chemother. 2002; 46: 267-274
        • Rice L.B.
        The Maxwell Finland lecture: for the duration-- rational antibiotic administration in an era of antimicrobial resistance and Clostridium difficile.
        Clin Infect Dis. 2008; 46: 491-496
        • Tamma P.D.
        • Cosgrove S.E.
        • Maragakis L.L.
        Combination therapy for treatment of infections with gram-negative bacteria.
        Clin Microbiol Rev. 2012; 25: 450-470
        • Eliopoulos G.M.
        • Eliopoulos C.T.
        Antibiotic combinations: should they be tested?.
        Clin Microbiol Rev. 1988; 1: 139-156
        • Bushby S.R.M.
        Trimethoprim-sulfamethoxazole: in vitro microbiological aspects.
        J Infect Dis. 1973; 128: S442-S462
        • Hitchings G.H.
        Mechanism of action of trimethoprim-sulfamethoxazole—I.
        J Infect Dis. 1973; 128: S433-S436
        • Drawz S.M.
        • Bonomo R.A.
        Three decades of β-lactamase inhibitors.
        Clin Microbiol Rev. 2010; 23: 160-201
        • Brennan-Krohn T.
        • Pironti A.
        • Kirby J.E.
        Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae.
        Antimicrob Agents Chemother. 2018; https://doi.org/10.1128/AAC.00873-18
        • Moellering R.C.
        • Weinberg A.N.
        Studies on antibiotic synergism against enterococci. II. Effect of various antibiotics on the uptake of 14 C-labeled streptomycin by enterococci.
        J Clin Invest. 1971; 50: 2580-2584
        • Vaara M.
        Agents that increase the permeability of the outer membrane.
        Microbiol Rev. 1992; 56: 395-411
        • Phee L.M.
        • Betts J.W.
        • Bharathan B.
        • et al.
        Colistin and fusidic acid, a novel potent synergistic combination for treatment of multidrug-resistant Acinetobacter baumannii infections.
        Antimicrob Agents Chemother. 2015; 59: 4544-4550
        • Gavaldà J.
        • Torres C.
        • Tenorio C.
        • et al.
        Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to Enterococcus faecalis strains highly resistant to aminoglycosides.
        Antimicrob Agents Chemother. 1999; 43: 639-646
        • Mainardi J.L.
        • Gutmann L.
        • Acar J.F.
        • et al.
        Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis.
        Antimicrob Agents Chemother. 1995; 39: 1984-1987https://doi.org/10.1128/AAC.39.9.1984
        • Baddour L.M.
        • Wilson W.R.
        • Bayer A.S.
        • et al.
        Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications.
        Circulation. 2015; 132: 1435-1486
        • Zimmerli W.
        • Sendi P.
        The role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic device-related infections.
        Antimicrob Agents Chemother. 2018; 63https://doi.org/10.1128/AAC.01746-18
        • Goldstein B.P.
        Resistance to rifampicin: a review.
        J Antibiot (Tokyo). 2014; 67: 625-630
        • Hirsch E.B.
        • Guo B.
        • Chang K.T.
        • et al.
        Assessment of antimicrobial combinations for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae.
        J Infect Dis. 2013; 207: 786-793
        • Louie A.
        • Liu W.
        • Vanguilder M.
        • et al.
        Combination treatment with meropenem plus levofloxacin is synergistic against pseudomonas aeruginosa infection in a murine model of Pneumonia.
        J Infect Dis. 2015; 211: 1326-1333
        • Descourouez J.L.
        • Jorgenson M.R.
        • Wergin J.E.
        • et al.
        Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant enterococcus faecium from renal transplant patients with infected urinary stents.
        Antimicrob Agents Chemother. 2013; 57: 1518-1520
        • Toledo P.V.M.
        • Aranha Junior A.A.
        • Arend L.N.
        • et al.
        Activity of antimicrobial combinations against KPC-2-Producing Klebsiella pneumoniae in a rat model and time-kill assay.
        Antimicrob Agents Chemother. 2015; 59: 4301-4304
        • Brennan-Krohn T.
        • Truelson K.A.
        • Smith K.P.
        • et al.
        Screening for synergistic activity of antimicrobial combinations against carbapenem-resistant Enterobacteriaceae using inkjet printer-based technology.
        J Antimicrob Chemother. 2017; 72: 2775-2781
        • Bergen P.J.
        • Forrest A.
        • Bulitta J.B.
        • et al.
        Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula.
        Antimicrob Agents Chemother. 2011; 55: 5134-5142
        • Sopirala M.M.
        • Mangino J.E.
        • Gebreyes W.A.
        • et al.
        Synergy testing by etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii.
        Antimicrob Agents Chemother. 2010; 54: 4678-4683
        • Smith J.R.
        • Barber K.E.
        • Raut A.
        • et al.
        β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium.
        J Antimicrob Chemother. 2014; 70: 1738-1743
        • Norden C.W.
        • Wentzel H.
        • Keleti E.
        Comparison of techniques for measurement of in vitro antibiotic synergism.
        J Infect Dis. 1979; 140: 629-633
        • Bayer A.S.
        • Morrison J.O.
        Disparity between timed-kill and checkerboard methods for determination of in vitro bactericidal interactions of vancomycin plus rifampin versus methicillin-susceptible and -resistant Staphylococcus aureus.
        Antimicrob Agents Chemother. 1984; 26: 220-223
        • White R.L.
        • Burgess D.S.
        • Manduru M.
        • et al.
        Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test.
        Antimicrob Agents Chemother. 1996; 40: 1914-1918
        • Ryan R.W.
        • Kwasnik I.
        • Tilton R.C.
        Methodological variation in antibiotic synergy tests against enterococci.
        J Clin Microbiol. 1981; 13: 73-75
        • Leber A.L.
        Synergism testing: broth microdilution checkerboard and broth macrodilution methods.
        in: Leber A.L. Clinical microbiology procedures handbook. 4th edition. ASM Press, Washington, DC2016: 5.16.1-5.16.23
        • CLSI
        Performance standards for antimicrobial susceptibility testing.
        29th edition. Clinical and Laboratory Standards Institute, Wayne (PA)2019 (CLSI Supplement M100)
        • Odds F.C.
        Synergy, antagonism, and what the chequerboard puts between them.
        J Antimicrob Chemother. 2003; 52: 1
        • Clinical and Laboratory Standards Institute
        M07: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.
        11th edition. Clinical and Laboratory Standards Institute, Wayne (PA)2018
        • Greco W.R.
        • Bravo G.
        • Parsons J.C.
        The search for synergy: a critical review from a response surface perspective.
        Pharmacol Rev. 1995; 47: 331-385
        • Berenbaum M.C.
        A method for testing for synergy with any number of agents.
        J Infect Dis. 1978; 137: 122-130
        • Berenbaum M.C.
        • Yu V.L.
        • Felegie T.P.
        Synergy with double and triple antibiotic combinations compared.
        J Antimicrob Chemother. 1983; 12: 555-563
        • CLSI
        Performance standards for antimicrobial disk susceptibility tests.
        13th edition. Clinical and Laboratory Standards Institute, Wayne (PA)2018 (CLSI Standard M02)
        • Pillai S.K.
        • Moellering Jr., R.C.
        • Eliopoulos G.M.
        Antimicrobial combinations.
        in: Lorian V. Antibiotics in laboratory medicine. Lippincott Williams & Wilkins, 2005: 365-440
        • Stein C.
        • Makarewicz O.
        • Bohnert J.A.
        • et al.
        Three dimensional checkerboard synergy analysis of colistin, meropenem, tigecycline against multidrug-resistant clinical Klebsiella pneumonia isolates.
        PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0126479
        • Doern C.D.
        When does 2 plus 2 equal 5? A review of antimicrobial synergy testing.
        J Clin Microbiol. 2014; 52: 4124-4128
        • Leber A.L.
        Etest.
        in: Leber A. Clinical microbiology procedures handbook. 4th edition. ASM Press, Washington, DC2016: 5.3
        • Pankey G.A.
        • Ashcraft D.S.
        • Dornelles A.
        Comparison of 3 Etest® methods and time-kill assay for determination of antimicrobial synergy against carbapenemase-producing Klebsiella species.
        Diagn Microbiol Infect Dis. 2013; 77: 220-226
        • Leber A.L.
        Time-kill assay for determining synergy.
        in: Leber A.L. Clinical microbiology procedures handbook. 4th edition. ASM Press, Washington, DC2016: 5.14.3.1-5.14.3.6
        • Clinical and Laboratory Standards Institute (CLSI)
        Methods for determining bactericidal activity of antimicrobial agents; approved guideline. CLSI document M26-A.
        Clinical and Laboratory Standards Institute, Wayne, PA1999
        • Drusano G.L.
        Pre-clinical in vitro infection models.
        Curr Opin Pharmacol. 2017; 36: 100-106
        • Blaser J.
        In-vitro model for simultaneous simulation of the serum kinetics of two drugs with different half-lives.
        J Antimicrob Chemother. 1985; 15: 125-130
        • Lenhard J.R.
        • Thamlikitkul V.
        • Silveira F.P.
        • et al.
        Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity.
        J Antimicrob Chemother. 2017; 72: 1415-1420
        • Landersdorfer C.B.
        • Yadav R.
        • Rogers K.E.
        • et al.
        Combating carbapenem-resistant Acinetobacter baumannii by an optimized imipenem-plus-Tobramycin dosage regimen: prospective validation via hollow-fiber infection and mathematical modeling.
        Antimicrob Agents Chemother. 2018; 62https://doi.org/10.1128/AAC.02053-17
        • Louie A.
        • Heine H.S.
        • Kim K.
        • et al.
        Use of an in vitro pharmacodynamic model to derive a linezolid regimen that optimizes bacterial kill and prevents emergence of resistance in Bacillus anthracis.
        Antimicrob Agents Chemother. 2008; 52: 2486-2496
        • Bulman Z.P.
        • Chen L.
        • Walsh T.J.
        • et al.
        Polymyxin combinations combat Escherichia coli harboring mcr-1 and blaNDM-5: preparation for a postantibiotic era.
        MBio. 2017; 8 ([pii:e00540-17])
        • Marshall S.
        • Hujer A.M.
        • Rojas L.J.
        • et al.
        Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae?.
        Antimicrob Agents Chemother. 2017; 61https://doi.org/10.1128/AAC.02243-16
        • Abdelraouf K.
        • Kim A.
        • Krause K.M.
        • et al.
        In vivo efficacy of plazomicin alone or in combination with meropenem or tigecycline against Enterobacteriaceae isolates exhibiting various resistance mechanisms in an immunocompetent murine septicemia model.
        Antimicrob Agents Chemother. 2018; 62https://doi.org/10.1128/AAC.01074-18
        • Andes D.
        • Craig W.A.
        Animal model pharmacokinetics and pharmacodynamics: a critical review.
        Int J Antimicrob Agents. 2002; 19: 261-268
        • Zuluaga A.F.
        • Salazar B.E.
        • Rodriguez C.A.
        • et al.
        Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases.
        BMC Infect Dis. 2006; 6: 55
        • Moellering R.C.
        • Weinberg A.N.
        Studies on antibiotic synergism against enterococci.
        J Clin Invest. 1971; https://doi.org/10.1172/JCI106758
        • Chow J.W.
        Aminoglycoside resistance in enterococci.
        Clin Infect Dis. 2000; 31: 586-589
        • Doi Y.
        • Chambers H.F.
        Penicillins and β-lactamase inhibitors.
        in: Bennett J.E. Dolin R. Blaser M.J. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, updated edition. 8th edition. Saunders, Philadelphia2015: 263-277
        • Zinner S.H.
        • Mayer K.H.
        Sulfonamides and trimethoprim.
        in: Bennett J.E. Dolin R. Blaser M.J. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, updated edition. 8th edition. Saunders, Philadelphia2015: 410-418
        • Tängdén T.
        • Hickman R.A.
        • Forsberg P.
        • et al.
        Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing klebsiella pneumoniae by in vitro time-kill experiments.
        Antimicrob Agents Chemother. 2014; 58: 1757-1762
        • Lim T.P.
        • Cai Y.
        • Hong Y.
        • et al.
        In vitro pharmacodynamics of various antibiotics in combination against extensively drug-resistant Klebsiella pneumoniae.
        Antimicrob Agents Chemother. 2015; 59: 2515-2524
        • Souli M.
        • Rekatsina P.D.
        • Chryssouli Z.
        • et al.
        Does the activity of the combination of imipenem and colistin in vitro exceed the problem of resistance in metallo-β-lactamase-producing Klebsiella pneumoniae isolates?.
        Antimicrob Agents Chemother. 2009; 53: 2133-2135
        • Bergen P.J.
        • Bulman Z.P.
        • Saju S.
        • et al.
        Polymyxin combinations: pharmacokinetics and pharmacodynamics for rationale use.
        Pharmacotherapy. 2015; 35: 34-42
        • Oliva A.
        • Scorzolini L.
        • Castaldi D.
        • et al.
        Double-carbapenem regimen, alone or in combination with colistin, in the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp).
        J Infect. 2017; 74: 103-106
        • Klastersky J.
        • Cappel R.
        • Daneau D.
        Clinical significance of in vitro synergism between antibiotics in gram-negative infections.
        Antimicrob Agents Chemother. 1972; 2: 470-475
        • de Maio Carrillho C.M.D.
        • Gaudereto J.J.
        • Martins R.C.R.
        • et al.
        Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy.
        Diagn Microbiol Infect Dis. 2017; 87: 253-257
        • Daikos G.L.
        • Tsaousi S.
        • Tzouvelekis L.S.
        • et al.
        Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems.
        Antimicrob Agents Chemother. 2014; 58: 2322-2328
        • Gutiérrez-Gutiérrez B.
        • Salamanca E.
        • de Cueto M.
        • et al.
        Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study.
        Lancet Infect Dis. 2017; 17: 726-734
        • Aaron S.D.
        • Vandemheen K.L.
        • Ferris W.
        • et al.
        Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: a randomised, double-blind, controlled clinical trial.
        Lancet. 2005; 366: 463-471
        • Aaron S.D.
        Antibiotic synergy testing should not be routine for patients with cystic fibrosis who are infected with multiresistant bacterial organisms.
        Paediatr Respir Rev. 2007; 8: 256-261
        • Saiman L.
        Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: “the motion for.
        Paediatr Respir Rev. 2007; 8: 249-255
        • Ramos-Castañeda J.A.
        • Ruano-Ravina A.
        • Barbosa-Lorenzo R.
        • et al.
        Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: systematic review and meta-analysis: mortality due to KPC Klebsiella pneumoniae infections.
        J Infect. 2018; 76: 438-448