Advertisement
Review Article| Volume 39, ISSUE 2, P281-294, June 2019

Technical, Biological, and Systems Barriers for Molecular Clinical Decision Support

Published:March 28, 2019DOI:https://doi.org/10.1016/j.cll.2019.01.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marsolo K.
        • Spooner S.A.
        Clinical genomics in the world of the electronic health record.
        Genet Med. 2013; 15: 786-791
        • Kruse C.S.
        • Kothman K.
        • Anerobi K.
        • et al.
        Adoption factors of the electronic health record: a systematic review.
        JMIR Med Inform. 2016; 4: e19
        • Rothman B.
        • Leonard J.C.
        • Vigoda M.M.
        Future of electronic health records: implications for decision support.
        Mt Sinai J Med. 2012; 79: 757-768
        • Tenenbaum J.D.
        Translational bioinformatics: past, present, and future.
        Genomics Proteomics Bioinformatics. 2016; 14: 31-41
        • Ashley E.A.
        Towards precision medicine.
        Nat Rev Genet. 2016; 17: 507-522
        • Collins F.S.
        • Varmus H.
        A new initiative on precision medicine.
        N Engl J Med. 2015; 372: 793-795
        • Hood L.
        • Friend S.H.
        Predictive, personalized, preventive, participatory (P4) cancer medicine.
        Nat Rev Clin Oncol. 2011; 8: 184-187
        • Bouaud J.
        • Lamy J.B.
        A 2014 medical informatics perspective on clinical decision support systems: do we hit the ceiling of effectiveness?.
        Yearb Med Inform. 2014; 9: 163-166
        • Osheroff J.A.
        • Teich J.M.
        • Middleton B.
        • et al.
        A roadmap for national action on clinical decision support.
        J Am Med Inform Assoc. 2007; 14: 141-145
        • Salari K.
        • Watkins H.
        • Ashley E.A.
        Personalized medicine: hope or hype?.
        Eur Heart J. 2012; 33: 1564-1570
        • Garg A.X.
        • Adhikari N.K.J.
        • McDonald H.
        • et al.
        Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review.
        JAMA. 2005; 293: 1223-1238
        • Kuperman G.J.
        • Bobb A.
        • Payne T.H.
        • et al.
        Medication-related clinical decision support in computerized provider order entry systems: a review.
        J Am Med Inform Assoc. 2007; 14: 29-40
        • Samore M.H.
        • Bateman K.
        • Alder S.C.
        • et al.
        Clinical decision support and appropriateness of antimicrobial prescribing: a randomized trial.
        JAMA. 2005; 294: 2305-2314
        • Relling M.V.
        • Klein T.E.
        CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network.
        Clin Pharmacol Ther. 2011; 89: 464-467
        • Bell G.C.
        • Crews K.R.
        • Wilkinson M.R.
        • et al.
        Development and use of active clinical decision support for preemptive pharmacogenomics.
        J Am Med Inform Assoc. 2014; 21: e93-e99
        • Overby C.L.
        • Tarczy-Hornoch P.
        • Hoath J.I.
        • et al.
        Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support.
        BMC Bioinformatics. 2010; 11: S10
        • Yu P.
        • Artz D.
        • Warner J.
        Electronic health records (EHRs): supporting ASCO's vision of cancer care.
        Am Soc Clin Oncol Educ Book. 2014; 34: 225-231
        • Bucur A.
        • van Leeuwen J.
        • Christodoulou N.
        • et al.
        Workflow-driven clinical decision support for personalized oncology.
        BMC Med Inform Decis Mak. 2016; 16: 147
        • Roshanov P.S.
        • You J.J.
        • Dhaliwal J.
        • et al.
        Can computerized clinical decision support systems improve practitioners' diagnostic test ordering behavior? A decision-maker-researcher partnership systematic review.
        Implement Sci. 2011; 6: 88
        • Dickerson J.A.
        • Cole B.
        • Conta J.H.
        • et al.
        Improving the value of costly genetic reference laboratory testing with active utilization management.
        Arch Pathol Lab Med. 2014; 138: 110-113
        • Sim I.
        • Gorman P.
        • Greenes R.A.
        • et al.
        Clinical decision support systems for the practice of evidence-based medicine.
        J Am Med Inform Assoc. 2001; 8: 527-534
        • Welch B.M.
        • Kawamoto K.
        Clinical decision support for genetically guided personalized medicine: a systematic review.
        J Am Med Inform Assoc. 2013; 20: 388-400
        • Castaneda C.
        • Nalley K.
        • Mannion C.
        • et al.
        Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.
        J Clin Bioinforma. 2015; 5: 4
        • Shirts B.H.
        • Parker L.S.
        Changing interpretations, stable genes: responsibilities of patients, professionals, and policy makers in the clinical interpretation of complex genetic information.
        Genet Med. 2008; 10: 778-783
        • Berner E.S.
        Clinical decision support systems.
        in: Berner E.S. Springer, New York2006https://doi.org/10.1007/978-0-387-38319-4
        • Khelifi M.
        • Tarczy-Hornoch P.
        • Devine E.B.
        • et al.
        Design recommendations for pharmacogenomics clinical decision support systems.
        AMIA Jt Summits Transl Sci Proc. 2017; 2017: 237-246
        • Hernandez-Boussard T.
        • Whirl-Carrillo M.
        • Hebert J.M.
        • et al.
        The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge.
        Nucleic Acids Res. 2007; 36: D913-D918
        • Aronson S.J.
        • Williams M.S.
        Genetics aware clinical decision support.
        in: Genomic and precision medicine. Academic Press, 2016: 205-215
        • Teixeira M.
        • Cook D.A.
        • Heale B.S.E.
        • et al.
        Optimization of infobutton design and Implementation: a systematic review.
        J Biomed Inform. 2017; 74: 10-19
        • McKusick-Nathans Institute of Genetic Medicine
        Online Mendelian Inheritance in man, OMIM®.
        (Available at:) (Accessed October 15, 2018)
        • Van Allen E.M.
        • Wagle N.
        • Levy M.A.
        Clinical analysis and interpretation of cancer genome data.
        J Clin Oncol. 2013; 31: 1825-1833
        • Tarczy-Hornoch P.
        • Amendola L.
        • Aronson S.J.
        • et al.
        A survey of informatics approaches to whole-exome and whole-genome clinical reporting in the electronic health record.
        Genet Med. 2013; 15: 824-832
        • Bates D.W.
        • Kuperman G.J.
        • Wang S.
        • et al.
        Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality.
        J Am Med Inform Assoc. 2003; 10: 523-530
        • Hoffman M.A.
        The genome-enabled electronic medical record.
        J Biomed Inform. 2007; 40: 44-46
        • Masys D.R.
        • Jarvik G.P.
        • Abernethy N.F.
        • et al.
        Technical desiderata for the integration of genomic data into electronic health records.
        J Biomed Inform. 2012; 45: 419-422
        • Welch B.M.
        • Eilbeck K.
        • Del Fiol G.
        • et al.
        Technical desiderata for the integration of genomic data with clinical decision support.
        J Biomed Inform. 2014; 51: 3-7
        • Dournaee B.
        • Natoli J.
        • Juneja G.
        • et al.
        Improving performance of healthcare systems with service oriented architecture.
        InfoQ, 2008 (Available at:) (Accessed October 15, 2018)
        • Kho A.N.
        • Rasmussen L.V.
        • Connolly J.J.
        • et al.
        Practical challenges in integrating genomic data into the electronic health record.
        Genet Med. 2013; 15: 772-778
        • Horton I.
        • Lin Y.
        • Reed G.
        • et al.
        Empowering Mayo Clinic individualized medicine with genomic data warehousing.
        J Pers Med. 2017; 7: 7
        • Shirts B.H.
        • Salama J.S.
        • Aronson S.J.
        • et al.
        CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record.
        J Am Med Inform Assoc. 2015; 22: 1231-1242
        • Muir P.
        • Li S.
        • Lou S.
        • et al.
        The real cost of sequencing: scaling computation to keep pace with data generation.
        Genome Biol. 2016; 17: 4731
        • Numanagić I.
        • Bonfield J.K.
        • Hach F.
        • et al.
        Comparison of high-throughput sequencing data compression tools.
        Nat Methods. 2016; 13: 1005-1008
        • Shabani M.
        • Vears D.
        • Borry P.
        Raw genomic data: storage, access, and sharing.
        Trends Genet. 2018; 34: 8-10
        • Langmead B.
        • Nellore A.
        Cloud computing for genomic data analysis and collaboration.
        Nat Rev Genet. 2018; 19: 208-219
        • Dove E.S.
        • Joly Y.
        • Tassé A.-M.
        • et al.
        Genomic cloud computing: legal and ethical points to consider.
        Eur J Hum Genet. 2015; 23: 1271-1278
        • Siu L.L.
        • Lawler M.
        • Haussler D.
        • et al.
        Facilitating a culture of responsible and effective sharing of cancer genome data.
        Nat Med. 2016; 22: 464-471
        • Alterovitz G.
        • Warner J.
        • Zhang P.
        • et al.
        SMART on FHIR Genomics: facilitating standardized clinico-genomic apps.
        J Am Med Inform Assoc. 2015; 22: 1173-1178
        • Mandel J.C.
        • Kreda D.A.
        • Mandl K.D.
        • et al.
        SMART on FHIR: a standards-based, interoperable apps platform for electronic health records.
        J Am Med Inform Assoc. 2016; 23: 899-908
        • Warner J.L.
        • Jain S.K.
        • Levy M.A.
        Integrating cancer genomic data into electronic health records.
        Genome Med. 2016; 8: 113
      1. McGowan-Jordan J, Schmid M, Simons A. Iscn 2016. 2016.

        • den Dunnen J.T.
        • Dalgleish R.
        • Maglott D.R.
        • et al.
        HGVS recommendations for the description of sequence variants: 2016 update.
        Hum Mutat. 2016; 37: 564-569
        • Deckard J.
        • McDonald C.J.
        • Vreeman D.J.
        Supporting interoperability of genetic data with LOINC.
        J Am Med Inform Assoc. 2015; 22: 621-627
        • Danecek P.
        • Auton A.
        • Abecasis G.
        • et al.
        The variant call format and VCFtools.
        Bioinformatics. 2011; 27: 2156-2158
        • Paul Rupa A.
        • Singh S.
        • Zhu Q.
        GT2RDF: semantic representation of genetic testing data.
        AMIA Annu Symp Proc. 2016; 2016: 1060-1069
        • Kawamoto K.
        CDS-Hooks.
        (Available at:)
        • Torkamani A.
        • Wineinger N.E.
        • Topol E.J.
        The personal and clinical utility of polygenic risk scores.
        Nat Rev Genet. 2018; 19: 581-590
        • Mathias P.C.
        • Tarczy-Hornoch P.
        • Shirts B.H.
        Modeling the costs of clinical decision support for genomic precision medicine.
        AMIA Jt Summits Transl Sci Proc. 2016; 2016: 60-64
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Shirts B.H.
        • Pritchard C.C.
        • Walsh T.
        Family-specific variants and the limits of human genetics.
        Trends Mol Med. 2016; 22: 925-934
        • Tonelli M.R.
        • Shirts B.H.
        Knowledge for precision medicine: mechanistic reasoning and methodological pluralism.
        JAMA. 2017; 318: 1649
        • Manolio T.A.
        • Collins F.S.
        • Cox N.J.
        • et al.
        Finding the missing heritability of complex diseases.
        Nature. 2009; 461: 747-753
        • Shankar P.
        • Anderson N.
        Advances in sharing multi-sourced health data on decision support science 2016-2017.
        Yearb Med Inform. 2018; 27: 16-24
        • Sorani M.D.
        • Yue J.K.
        • Sharma S.
        • et al.
        Genetic data sharing and privacy.
        Neuroinformatics. 2015; 13: 1-6
        • Wright A.
        • Sittig D.F.
        • Ash J.S.
        • et al.
        Clinical decision support capabilities of commercially-available clinical information systems.
        J Am Med Inform Assoc. 2009; 16: 637-644
        • Doerr M.
        • Edelman E.
        • Gabitzsch E.
        • et al.
        Formative evaluation of clinician experience with integrating family history-based clinical decision support into clinical practice.
        J Pers Med. 2014; 4: 115-136
        • Welch B.M.
        • Dere W.
        • Schiffman J.D.
        Family health history: the case for better tools.
        JAMA. 2015; 313: 1711-1712
        • Polubriaginof F.
        • Tatonetti N.P.
        • Vawdrey D.K.
        An assessment of family history information captured in an electronic health record.
        AMIA Annu Symp Proc. 2015; 2015: 2035-2042
      2. Coalition’s reactions to public comments on the voluntary industry guidelines. cdscoalition.org. Available at: http://cdscoalition.org/wp-content/uploads/2017/08/CDS-3060-Guidelines-Final-2.pdf. Accessed October 15, 2018.

        • Greenberg M.
        • Ridgely M.S.
        Clinical decision support and malpractice risk.
        JAMA. 2011; 306: 90-91
        • Fox J.
        • Thomson R.
        Clinical decision support systems: a discussion of quality, safety and legal liability issues.
        Proc AMIA Symp. 2002; : 265-269
        • Kawamoto K.
        • Hongsermeier T.
        • Wright A.
        • et al.
        Key principles for a national clinical decision support knowledge sharing framework: synthesis of insights from leading subject matter experts.
        J Am Med Inform Assoc. 2013; 20: 199-207
      3. Clinical and patient decision support software. fda.gov. Available at: https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf. Accessed October 15, 2018.

        • Deverka P.A.
        • Kaufman D.
        • McGuire A.L.
        Overcoming the Reimbursement barriers for clinical sequencing.
        JAMA. 2014; 312: 1857-1858
        • Aronson S.J.
        • Clark E.H.
        • Varugheese M.
        • et al.
        Communicating new knowledge on previously reported genetic variants.
        Genet Med. 2012; 14: 713-719