Advertisement
Review Article| Volume 39, ISSUE 1, P73-85, March 2019

Biomarkers in Solid Organ Transplantation

Published:December 17, 2018DOI:https://doi.org/10.1016/j.cll.2018.11.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Merrill J.P.
        • Murray J.E.
        • Harrison J.H.
        • et al.
        Successful homotransplantation of the human kidney between identical twins.
        JAMA. 1956; 160: 277-282
        • Wood R.P.
        • Ozaki C.F.
        • Katz S.M.
        • et al.
        Liver transplantation. The last ten years.
        Surg Clin North Am. 1994; 74: 1133-1154
      1. Annual data report of the US Organ Procurement and Transplantation Network (OPTN) and the scientific registry of transplant recipients (SRTR). Introduction.
        Am J Transplant. 2013; 13: 8-10
        • Large S.R.
        • English T.A.
        • Wallwork J.
        Heart and heart-lung transplantation, Papworth Hospital, 1979-1989.
        Clin Transpl. 1989; : 73-78
        • O'Brien B.J.
        • Buxton M.J.
        • Ferguson B.A.
        Measuring the effectiveness of heart transplant programmes: quality of life data and their relationship to survival analysis.
        J Chronic Dis. 1987; 40: 137S-158S
        • Lough M.E.
        • Lindsey A.M.
        • Shinn J.A.
        • et al.
        Life satisfaction following heart transplantation.
        J Heart Transplant. 1985; 4: 446-449
        • Bunzel B.
        • Grundbock A.
        • Laczkovics A.
        • et al.
        Quality of life after orthotopic heart transplantation.
        J Heart Lung Transplant. 1991; 10: 455-459
        • Russell J.D.
        • Beecroft M.L.
        • Ludwin D.
        • et al.
        The quality of life in renal transplantation--a prospective study.
        Transplantation. 1992; 54: 656-660
        • Witzke O.
        • Becker G.
        • Franke G.
        • et al.
        Kidney transplantation improves quality of life.
        Transplant Proc. 1997; 29: 1569-1570
        • Starzl T.E.
        • Koep L.J.
        • Schroter G.P.
        • et al.
        The quality of life after liver transplantation.
        Transplant Proc. 1979; 11: 252-256
        • Colonna 2nd, J.O.
        • Brems J.J.
        • Hiatt J.R.
        • et al.
        The quality of survival after liver transplantation.
        Transplant Proc. 1988; 20: 594-597
        • Bravata D.M.
        • Olkin I.
        • Barnato A.E.
        • et al.
        Health-related quality of life after liver transplantation: a meta-analysis.
        Liver Transpl Surg. 1999; 5: 318-331
        • Lamb K.E.
        • Lodhi S.
        • Meier-Kriesche H.U.
        Long-term renal allograft survival in the United States: a critical reappraisal.
        Am J Transplant. 2011; 11: 450-462
        • Stegall M.D.
        • Morris R.E.
        • Alloway R.R.
        • et al.
        Developing new immunosuppression for the next generation of transplant recipients: the path forward.
        Am J Transplant. 2016; 16: 1094-1101
        • Biomarkers Definitions Working Group
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95
        • Murray J.E.
        • Hills W.
        The first successful organ transplants in man..
        JACS. 2005; 200: 5-9
        • Patel R.
        • Terasaki P.I.
        Significance of the positive crossmatch test in kidney transplantation.
        N Engl J Med. 1969; 280: 735-739
        • Lefaucheur C.
        • Loupy A.
        • Hill G.S.
        • et al.
        Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation.
        J Am Soc Nephrol. 2010; 21: 1398-1406
        • Mao Q.
        • Terasaki P.I.
        • Cai J.
        • et al.
        Extremely high association between appearance of HLA antibodies and failure of kidney grafts in a five-year longitudinal study.
        Am J Transplant. 2007; 7: 864-871
        • Wiebe C.
        • Gibson I.W.
        • Blydt-Hansen T.D.
        • et al.
        Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant.
        Am J Transplant. 2012; 12: 1157-1167
        • Chen G.
        • Tyan D.B.
        C1q assay for the detection of complement fixing antibody to HLA antigens.
        Methods Mol Biol. 2013; 1034: 305-311
        • Chin C.
        • Chen G.
        • Sequeria F.
        • et al.
        Clinical usefulness of a novel C1q assay to detect immunoglobulin G antibodies capable of fixing complement in sensitized pediatric heart transplant patients.
        J Heart Lung Transplant. 2011; 30: 158-163
        • Yabu J.M.
        • Higgins J.P.
        • Chen G.
        • et al.
        C1q-fixing human leukocyte antigen antibodies are specific for predicting transplant glomerulopathy and late graft failure after kidney transplantation.
        Transplantation. 2011; 91: 342-347
        • Chen G.
        • Sequeira F.
        • Tyan D.B.
        Novel C1q assay reveals a clinically relevant subset of human leukocyte antigen antibodies independent of immunoglobulin G strength on single antigen beads.
        Hum Immunol. 2011; 72: 849-858
        • Duquesnoy R.J.
        • Takemoto S.
        • de Lange P.
        • et al.
        HLAmatchmaker: a molecularly based algorithm for histocompatibility determination. III. Effect of matching at the HLA-A,B amino acid triplet level on kidney transplant survival.
        Transplantation. 2003; 75: 884-889
        • Lim W.H.
        • Wong G.
        • Heidt S.
        • et al.
        Novel aspects of epitope matching and practical application in kidney transplantation.
        Kidney Int. 2018; 93: 314-324
        • Sypek M.
        • Kausman J.
        • Holt S.
        • et al.
        HLA epitope matching in kidney transplantation: an overview for the general nephrologist.
        Am J Kidney Dis. 2018; 71: 720-731
        • Wiebe C.
        • Pochinco D.
        • Blydt-Hansen T.D.
        • et al.
        Class II HLA epitope matching-A strategy to minimize de novo donor-specific antibody development and improve outcomes.
        Am J Transplant. 2013; 13: 3114-3122
        • Li L.
        • Wadia P.
        • Chen R.
        • et al.
        Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and "antibodyome" measures.
        Proc Natl Acad Sci U S A. 2009; 106: 4148-4153
        • Opelz G.
        • Collaborative Transplant Study
        Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies.
        Lancet. 2005; 365: 1570-1576
        • Terasaki P.I.
        Deduction of the fraction of immunologic and non-immunologic failure in cadaver donor transplants.
        Clin Transpl. 2003; : 449-452
        • Brasile L.
        • Rodman E.
        • Shield 3rd, C.F.
        • et al.
        The association of antivascular endothelial cell antibody with hyperacute rejection: a case report.
        Surgery. 1986; 99: 637-640
        • Harmer A.W.
        • Haskard D.
        • Koffman C.G.
        • et al.
        Novel antibodies associated with unexplained loss of renal allografts.
        Transpl Int. 1990; 3: 66-69
        • Jackson A.M.
        • Kuperman M.B.
        • Montgomery R.A.
        Multiple hyperacute rejections in the absence of detectable complement activation in a patient with endothelial cell reactive antibody.
        Am J Transplant. 2012; 12: 1643-1649
        • Jordan S.C.
        • Yap H.K.
        • Sakai R.S.
        • et al.
        Hyperacute allograft rejection mediated by anti-vascular endothelial cell antibodies with a negative monocyte crossmatch.
        Transplantation. 1988; 46: 585-587
        • Niikura T.
        • Yamamoto I.
        • Nakada Y.
        • et al.
        Probable C4d-negative accelerated acute antibody-mediated rejection due to non-HLA antibodies.
        Nephrology (Carlton). 2015; 20: 75-78
        • Sumitran-Karuppan S.
        • Tyden G.
        • Reinholt F.
        • et al.
        Hyperacute rejections of two consecutive renal allografts and early loss of the third transplant caused by non-HLA antibodies specific for endothelial cells.
        Transpl Immunol. 1997; 5: 321-327
        • Perrey C.
        • Brenchley P.E.
        • Johnson R.W.
        • et al.
        An association between antibodies specific for endothelial cells and renal transplant failure.
        Transpl Immunol. 1998; 6: 101-106
        • Zou Y.
        • Stastny P.
        • Susal C.
        • et al.
        Antibodies against MICA antigens and kidney-transplant rejection.
        N Engl J Med. 2007; 357: 1293-1300
        • Alachkar N.
        • Gupta G.
        • Montgomery R.A.
        Angiotensin antibodies and focal segmental glomerulosclerosis.
        N Engl J Med. 2013; 368: 971-973
        • Mujtaba M.A.
        • Sharfuddin A.A.
        • Book B.L.
        • et al.
        Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis recurrence.
        Clin Transplant. 2015; 29: 606-611
        • Delville M.
        • Sigdel T.K.
        • Wei C.
        • et al.
        A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation.
        Sci Transl Med. 2014; 6: 256ra136
        • Waikar S.S.
        • Betensky R.A.
        • Emerson S.C.
        • et al.
        Imperfect gold standards for kidney injury biomarker evaluation.
        J Am Soc Nephrol. 2012; 23: 13-21
        • Nankivell B.J.
        • Alexander S.I.
        Rejection of the kidney allograft.
        N Engl J Med. 2010; 363: 1451-1462
        • Halawa A.
        The early diagnosis of acute renal graft dysfunction: a challenge we face. The role of novel biomarkers.
        Ann Transplant. 2011; 16: 90-98
        • Williams W.W.
        • Taheri D.
        • Tolkoff-Rubin N.
        • et al.
        Clinical role of the renal transplant biopsy.
        Nat Rev Nephrol. 2012; 8: 110-121
        • Diaz-Buxo J.A.
        • Donadio Jr., J.V.
        Complications of percutaneous renal biopsy: an analysis of 1,000 consecutive biopsies.
        Clin Nephrol. 1975; 4: 223-227
        • Stiles K.P.
        • Yuan C.M.
        • Chung E.M.
        • et al.
        Renal biopsy in high-risk patients with medical diseases of the kidney.
        Am J Kidney Dis. 2000; 36: 419-433
        • Kersnik Levart T.
        • Kenig A.
        • Buturovic Ponikvar J.
        • et al.
        Real-time ultrasound-guided renal biopsy with a biopsy gun in children: safety and efficacy.
        Acta Paediatr. 2001; 90: 1394-1397
        • Chesney D.S.
        • Brouhard B.H.
        • Cunningham R.J.
        Safety and cost effectiveness of pediatric percutaneous renal biopsy.
        Pediatr Nephrol. 1996; 10: 493-495
        • Mahoney M.C.
        • Racadio J.M.
        • Merhar G.L.
        • et al.
        Safety and efficacy of kidney transplant biopsy: Tru-Cut needle vs sonographically guided biopsy gun.
        AJR Am J Roentgenol. 1993; 160: 325-326
        • Sarwal M.
        • Chua M.S.
        • Kambham N.
        • et al.
        Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.
        N Engl J Med. 2003; 349: 125-138
        • Suthanthiran M.
        • Muthukumar T.
        Urinary-cell mRNA and acute kidney-transplant rejection.
        N Engl J Med. 2013; 369: 1860-1861
        • Nelson P.J.
        • Krensky A.M.
        Chemokines, chemokine receptors, and allograft rejection.
        Immunity. 2001; 14: 377-386
        • Segerer S.
        • Cui Y.
        • Eitner F.
        • et al.
        Expression of chemokines and chemokine receptors during human renal transplant rejection.
        Am J Kidney Dis. 2001; 37: 518-531
        • Hu H.
        • Aizenstein B.D.
        • Puchalski A.
        • et al.
        Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction.
        Am J Transplant. 2004; 4: 432-437
        • Jackson J.A.
        • Kim E.J.
        • Begley B.
        • et al.
        Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection.
        Am J Transplant. 2011; 11: 2228-2234
        • Hricik D.E.
        • Nickerson P.
        • Formica R.N.
        • et al.
        Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury.
        Am J Transplant. 2013; 13: 2634-2644
        • Schaub S.
        • Nickerson P.
        • Rush D.
        • et al.
        Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis.
        Am J Transplant. 2009; 9: 1347-1353
        • Rabant M.
        • Amrouche L.
        • Lebreton X.
        • et al.
        Urinary C-X-C motif chemokine 10 independently improves the noninvasive diagnosis of antibody-mediated kidney allograft rejection.
        J Am Soc Nephrol. 2015; 26: 2840-2851
        • Halloran P.F.
        • Reeve J.P.
        • Pereira A.B.
        • et al.
        Antibody-mediated rejection, T cell-mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies.
        Kidney Int. 2014; 85: 258-264
        • Halloran P.F.
        • Famulski K.S.
        • Reeve J.
        Molecular assessment of disease states in kidney transplant biopsy samples.
        Nat Rev Nephrol. 2016; 12: 534-548
        • Halloran P.F.
        • Reeve J.
        • Akalin E.
        • et al.
        Real time central assessment of kidney transplant indication biopsies by microarrays: the INTERCOMEX Study.
        Am J Transplant. 2017; 17: 2851-2862
        • O'Connell P.J.
        • Zhang W.
        • Menon M.C.
        • et al.
        Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study.
        Lancet. 2016; 388: 983-993
        • Voelkerding K.V.
        • Dames S.A.
        • Durtschi J.D.
        Next-generation sequencing: from basic research to diagnostics.
        Clin Chem. 2009; 55: 641-658
        • Knight S.R.
        • Thorne A.
        • Faro M.L.L.
        Donor-specific Cell-Free DNA as a biomarker in solid organ transplantation. A systematic review.
        Transplantation. 2018; https://doi.org/10.1097/TP.0000000000002482
        • Agbor-Enoh S.
        • Tunc I.
        • De Vlaminck I.
        • et al.
        Applying rigor and reproducibility standards to assay donor-derived cell-free DNA as a non-invasive method for detection of acute rejection and graft injury after heart transplantation.
        J Heart Lung Transplant. 2017; 36: 1004-1012
        • Schutz E.
        • Fischer A.
        • Beck J.
        • et al.
        Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study.
        PLoS Med. 2017; 14: e1002286
        • Zou J.
        • Duffy B.
        • Slade M.
        • et al.
        Rapid detection of donor cell free DNA in lung transplant recipients with rejections using donor-recipient HLA mismatch.
        Hum Immunol. 2017; 78: 342-349
        • Gordon P.M.
        • Khan A.
        • Sajid U.
        • et al.
        An Algorithm measuring donor cell-free DNA in plasma of cellular and solid organ transplant recipients that does not require donor or recipient genotyping.
        Front Cardiovasc Med. 2016; 3: 33
        • Beck J.
        • Oellerich M.
        • Schulz U.
        • et al.
        Donor-derived cell-free DNA is a novel universal biomarker for allograft rejection in solid organ transplantation.
        Transplant Proc. 2015; 47: 2400-2403
        • Park J.
        • Lin H.Y.
        • Assaker J.P.
        • et al.
        Integrated kidney exosome analysis for the detection of kidney transplant rejection.
        ACS Nano. 2017; 11: 11041-11046
        • Fishman J.A.
        Infection in solid-organ transplant recipients.
        N Engl J Med. 2007; 357: 2601-2614
        • Hricik D.E.
        • Formica R.N.
        • Nickerson P.
        • et al.
        Adverse outcomes of tacrolimus withdrawal in immune-quiescent kidney transplant recipients.
        J Am Soc Nephrol. 2015; 26: 3114-3122
        • Kasiske B.L.
        • Chakkera H.A.
        • Louis T.A.
        • et al.
        A meta-analysis of immunosuppression withdrawal trials in renal transplantation.
        J Am Soc Nephrol. 2000; 11: 1910-1917
        • Schiff J.
        • Cole E.
        • Cantarovich M.
        Therapeutic monitoring of calcineurin inhibitors for the nephrologist.
        Clin J Am Soc Nephrol. 2007; 2: 374-384
        • Hricik D.E.
        • Rodriguez V.
        • Riley J.
        • et al.
        Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients.
        Am J Transplant. 2003; 3: 878-884
        • Ashoor I.
        • Najafian N.
        • Korin Y.
        • et al.
        Standardization and cross validation of alloreactive IFNgamma ELISPOT assays within the clinical trials in organ transplantation consortium.
        Am J Transplant. 2013; 13: 1871-1879
        • Nather B.J.
        • Nickel P.
        • Bold G.
        • et al.
        Modified ELISPOT technique--highly significant inverse correlation of post-Tx donor-reactive IFNgamma-producing cell frequencies with 6 and 12 months graft function in kidney transplant recipients.
        Transpl Immunol. 2006; 16: 232-237
        • Nickel P.
        • Presber F.
        • Bold G.
        • et al.
        Enzyme-linked immunosorbent spot assay for donor-reactive interferon-gamma-producing cells identifies T-cell presensitization and correlates with graft function at 6 and 12 months in renal-transplant recipients.
        Transplantation. 2004; 78: 1640-1646
        • Hricik D.E.
        • Augustine J.
        • Nickerson P.
        • et al.
        Interferon gamma ELISPOT testing as a risk-stratifying biomarker for kidney transplant injury: results from the CTOT-01 multicenter study.
        Am J Transplant. 2015; 15: 3166-3173
        • Sottong P.R.
        • Rosebrock J.A.
        • Britz J.A.
        • et al.
        Measurement of T-lymphocyte responses in whole-blood cultures using newly synthesized DNA and ATP.
        Clin Diagn Lab Immunol. 2000; 7: 307-311
        • Kowalski R.J.
        • Post D.R.
        • Mannon R.B.
        • et al.
        Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay.
        Transplantation. 2006; 82: 663-668
        • Huskey J.
        • Gralla J.
        • Wiseman A.C.
        Single time point immune function assay (ImmuKnow) testing does not aid in the prediction of future opportunistic infections or acute rejection.
        Clin J Am Soc Nephrol. 2011; 6: 423-429
        • Wang Z.
        • Liu X.
        • Lu P.
        • et al.
        Performance of the ImmuKnow assay in differentiating infection and acute rejection after kidney transplantation: a meta-analysis.
        Transplant Proc. 2014; 46: 3343-3351
        • Moon H.H.
        • Kim T.S.
        • Lee S.
        • et al.
        Serial ImmuKnow assay in stable kidney transplant recipients.
        Cent Eur J Immunol. 2014; 39: 96-99
        • Ravaioli M.
        • Neri F.
        • Lazzarotto T.
        • et al.
        Immunosuppression modifications based on an immune response assay: results of a randomized, controlled trial.
        Transplantation. 2015; 99: 1625-1632
        • He J.
        • Li Y.
        • Zhang H.
        • et al.
        Immune function assay (ImmuKnow) as a predictor of allograft rejection and infection in kidney transplantation.
        Clin Transplant. 2013; 27: E351-E358
        • Kwun J.
        • Bulut P.
        • Kim E.
        • et al.
        The role of B cells in solid organ transplantation.
        Semin Immunol. 2012; 24: 96-108
        • Valujskikh A.
        • Bromberg J.S.
        Literature watch: implications for transplantation.
        Am J Transplant. 2013; 13: 1117
        • Zachary A.A.
        • Kopchaliiska D.
        • Montgomery R.A.
        • et al.
        HLA-specific B cells: I. A method for their detection, quantification, and isolation using HLA tetramers.
        Transplantation. 2007; 83: 982-988
        • Zachary A.A.
        • Kopchaliiska D.
        • Montgomery R.A.
        • et al.
        HLA-specific B cells: II. Application to transplantation.
        Transplantation. 2007; 83: 989-994
        • Zachary A.A.
        • Lucas D.P.
        • Montgomery R.A.
        • et al.
        Rituximab prevents an anamnestic response in patients with cryptic sensitization to HLA.
        Transplantation. 2013; 95: 701-704
        • Czerkinsky C.C.
        • Nilsson L.A.
        • Nygren H.
        • et al.
        A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells.
        J Immunol Methods. 1983; 65: 109-121
        • Heidt S.
        • Roelen D.L.
        • de Vaal Y.J.
        • et al.
        A NOVel ELISPOT assay to quantify HLA-specific B cells in HLA-immunized individuals.
        Am J Transplant. 2012; 12: 1469-1478
        • Karahan G.E.
        • de Vaal Y.J.
        • Roelen D.L.
        • et al.
        Quantification of HLA class II-specific memory B cells in HLA-sensitized individuals.
        Hum Immunol. 2015; 76: 129-136
        • Thaunat O.
        • Patey N.
        • Caligiuri G.
        • et al.
        Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis.
        J Immunol. 2010; 185: 717-728
        • Thaunat O.
        • Field A.C.
        • Dai J.
        • et al.
        Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response.
        Proc Natl Acad Sci U S A. 2005; 102: 14723-14728
        • Bachelet T.
        • Couzi L.
        • Lepreux S.
        • et al.
        Kidney intragraft donor-specific antibodies as determinant of antibody-mediated lesions and poor graft outcome.
        Am J Transplant. 2013; 13: 2855-2864
        • Doshi M.D.
        • Goggins M.O.
        • Li L.
        • et al.
        Medical outcomes in African American live kidney donors: a matched cohort study.
        Am J Transplant. 2013; 13: 111-118
        • Muzaale A.D.
        • Massie A.B.
        • Wang M.C.
        • et al.
        Risk of end-stage renal disease following live kidney donation.
        JAMA. 2014; 311: 579-586
        • Genovese G.
        • Friedman D.J.
        • Ross M.D.
        • et al.
        Association of trypanolytic ApoL1 variants with kidney disease in African Americans.
        Science. 2010; 329: 841-845
        • Kopp J.B.
        • Smith M.W.
        • Nelson G.W.
        • et al.
        MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis.
        Nat Genet. 2008; 40: 1175-1184
        • Ma L.
        • Langefeld C.D.
        • Comeau M.E.
        • et al.
        APOL1 renal-risk genotypes associate with longer hemodialysis survival in prevalent nondiabetic African American patients with end-stage renal disease.
        Kidney Int. 2016; 90: 389-395
        • Kalil R.S.
        • Smith R.J.
        • Rastogi P.
        • et al.
        Late reoccurrence of collapsing FSGS after transplantation of a living-related kidney bearing APOL 1 risk variants without disease evident in donor supports the second hit hypothesis.
        Transplant Direct. 2017; 3: e185
        • Locke J.E.
        • Sawinski D.
        • Reed R.D.
        • et al.
        Apolipoprotein L1 and chronic kidney disease risk in young potential living kidney donors.
        Ann Surg. 2018; 267: 1161-1168
        • Doshi M.D.
        • Ortigosa-Goggins M.
        • Garg A.X.
        • et al.
        APOL1 genotype and renal function of black living donors.
        J Am Soc Nephrol. 2018; 29: 1309-1316
        • Young B.A.
        • Fullerton S.M.
        • Wilson J.G.
        • et al.
        Clinical genetic testing for APOL1: are we there yet?.
        Semin Nephrol. 2017; 37: 552-557
        • Wu H.
        • Malone A.F.
        • Donnelly E.L.
        • et al.
        Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response.
        J Am Soc Nephrol. 2018; 29: 2069-2080
        • Sarwal M.M.
        • Benjamin J.
        • Butte A.J.
        • et al.
        Transplantomics and biomarkers in organ transplantation: a report from the first international conference.
        Transplantation. 2011; 91: 379-382