Advertisement
Review Article| Volume 39, ISSUE 1, P145-156, March 2019

Biomarkers in Fetomaternal Tolerance

Published:December 17, 2018DOI:https://doi.org/10.1016/j.cll.2018.11.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kovats S.
        • Main E.K.
        • Librach C.
        • et al.
        A class I antigen, HLA-G, expressed in human trophoblasts.
        Science. 1990; 248: 220-223
        • Ferreira L.M.R.
        • Meissner T.B.
        • Tilburgs T.
        • et al.
        HLA-G: at the interface of maternal-fetal tolerance.
        Trends Immunol. 2017; 38: 272-286
        • Hunt J.S.
        • Vassmer D.
        • Ferguson T.A.
        • et al.
        Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus.
        J Immunol. 1997; 158: 4122-4128
        • Okada H.
        • Tsuzuki T.
        • Murata H.
        Decidualization of the human endometrium.
        Reprod Med Biol. 2018; 17: 220-227
        • Aghajanova L.
        • Hamilton A.E.
        • Giudice L.C.
        Uterine receptivity to human embryonic implantation: histology, biomarkers, and transcriptomics.
        Semin Cell Dev Biol. 2008; 19: 204-211
        • Koot Y.E.
        • van Hooff S.R.
        • Boomsma C.M.
        • et al.
        An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF.
        Sci Rep. 2016; 6: 19411
        • Wang H.
        • Dey S.K.
        Roadmap to embryo implantation: clues from mouse models.
        Nat Rev Genet. 2006; 7: 185-199
        • Lobo S.C.
        • Huang S.T.
        • Germeyer A.
        • et al.
        The immune environment in human endometrium during the window of implantation.
        Am J Reprod Immunol. 2004; 52: 244-251
        • Hofmann A.P.
        • Gerber S.A.
        • Croy B.A.
        Uterine natural killer cells pace early development of mouse decidua basalis.
        Mol Hum Reprod. 2014; 20: 66-76
        • Le Bouteiller P.
        Human decidual NK cells: unique and tightly regulated effector functions in healthy and pathogen-infected pregnancies.
        Front Immunol. 2013; 4: 404
        • Chaouat G.
        Inflammation, NK cells and implantation: friend and foe (the good, the bad and the ugly?): replacing placental viviparity in an evolutionary perspective.
        J Reprod Immunol. 2013; 97: 2-13
        • Jabrane-Ferrat N.
        • Siewiera J.
        The up side of decidual natural killer cells: new developments in immunology of pregnancy.
        Immunology. 2014; 141: 490-497
        • Tripathi S.
        • Chabtini L.
        • Dakle P.J.
        • et al.
        Effect of TIM-3 blockade on the immunophenotype and cytokine profile of murine uterine NK cells.
        PLoS One. 2015; 10: e0123439
        • Fu B.
        • Li X.
        • Sun R.
        • et al.
        Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human fetomaternal interface.
        Proc Natl Acad Sci U S A. 2013; 110: E231-E240
        • Leno-Duran E.
        • Munoz-Fernandez R.
        • Olivares E.G.
        • et al.
        Liaison between natural killer cells and dendritic cells in human gestation.
        Cell Mol Immunol. 2014; 11: 449-455
        • Sharma S.
        Natural killer cells and regulatory T cells in early pregnancy loss.
        Int J Dev Biol. 2014; 58: 219-229
        • Lash G.E.
        • Robson S.C.
        • Bulmer J.N.
        Review: functional role of uterine natural killer (uNK) cells in human early pregnancy decidua.
        Placenta. 2010; 31: S87-S92
        • Fu B.
        • Zhou Y.
        • Ni X.
        • et al.
        Natural killer cells promote fetal development through the secretion of growth-promoting factors.
        Immunity. 2017; 47: 1100-11013 e6
        • Ning F.
        • Liu H.
        • Lash G.E.
        The role of decidual macrophages during normal and pathological pregnancy.
        Am J Reprod Immunol. 2016; 75: 298-309
        • Nagamatsu T.
        • Schust D.J.
        The contribution of macrophages to normal and pathological pregnancies.
        Am J Reprod Immunol. 2010; 63: 460-471
        • Brown M.B.
        • von Chamier M.
        • Allam A.B.
        • et al.
        M1/M2 macrophage polarity in normal and complicated pregnancy.
        Front Immunol. 2014; 5: 606
        • Svensson-Arvelund J.
        • Mehta R.B.
        • Lindau R.
        • et al.
        The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages.
        J Immunol. 2015; 194: 1534-1544
        • Houser B.L.
        • Tilburgs T.
        • Hill J.
        • et al.
        Two unique human decidual macrophage populations.
        J Immunol. 2011; 186: 2633-2642
        • Jiang X.
        • Du M.R.
        • Li M.
        • et al.
        Three macrophage subsets are identified in the uterus during early human pregnancy.
        Cell Mol Immunol. 2018; 15: 1027-1037
        • Sayama S.
        • Nagamatsu T.
        • Schust D.J.
        • et al.
        Human decidual macrophages suppress IFN-gamma production by T cells through costimulatory B7-H1:PD-1 signaling in early pregnancy.
        J Reprod Immunol. 2013; 100: 109-117
        • Shakhawat A.
        • Shaikly V.
        • Elzatma E.
        • et al.
        Interaction between HLA-G and monocyte/macrophages in human pregnancy.
        J Reprod Immunol. 2010; 85: 40-46
        • Wheeler K.C.
        • Jena M.K.
        • Pradhan B.S.
        • et al.
        VEGF may contribute to macrophage recruitment and M2 polarization in the decidua.
        PLoS One. 2018; 13: e0191040
        • Bartmann C.
        • Junker M.
        • Segerer S.E.
        • et al.
        CD33(+)/HLA-DR(neg) and CD33(+)/HLA-DR(+/-) cells: rare populations in the human decidua with characteristics of MDSC.
        Am J Reprod Immunol. 2016; 75: 539-556
        • Nair R.R.
        • Sinha P.
        • Khanna A.
        • et al.
        Reduced myeloid-derived suppressor cells in the blood and endometrium is associated with early miscarriage.
        Am J Reprod Immunol. 2015; 73: 479-486
        • Kusmartsev S.
        • Su Z.
        • Heiser A.
        • et al.
        Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma.
        Clin Cancer Res. 2008; 14: 8270-8278
        • Liu C.Y.
        • Wang Y.M.
        • Wang C.L.
        • et al.
        Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(-)/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer.
        J Cancer Res Clin Oncol. 2010; 136: 35-45
        • Kang X.
        • Zhang X.
        • Liu Z.
        • et al.
        Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-beta/beta-catenin pathway.
        Mol Hum Reprod. 2016; 22: 499-511
        • Pan T.
        • Liu Y.
        • Zhong L.M.
        • et al.
        Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice.
        J Leukoc Biol. 2016; 100: 499-511
        • Zhao H.
        • Kalish F.
        • Schulz S.
        • et al.
        Unique roles of infiltrating myeloid cells in the murine uterus during early to midpregnancy.
        J Immunol. 2015; 194: 3713-3722
        • Dardalhon V.
        • Anderson A.C.
        • Karman J.
        • et al.
        Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells.
        J Immunol. 2010; 185: 1383-1392
        • Gabrilovich D.I.
        • Nagaraj S.
        Myeloid-derived suppressor cells as regulators of the immune system.
        Nat Rev Immunol. 2009; 9: 162-174
        • Bronte V.
        • Serafini P.
        • De Santo C.
        • et al.
        IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice.
        J Immunol. 2003; 170: 270-278
        • Liu C.
        • Yu S.
        • Kappes J.
        • et al.
        Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host.
        Blood. 2007; 109: 4336-4342
        • Hoechst B.
        • Voigtlaender T.
        • Ormandy L.
        • et al.
        Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor.
        Hepatology. 2009; 50: 799-807
        • Li H.
        • Han Y.
        • Guo Q.
        • et al.
        Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1.
        J Immunol. 2009; 182: 240-249
        • Huang B.
        • Pan P.Y.
        • Li Q.
        • et al.
        Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host.
        Cancer Res. 2006; 66: 1123-1131
        • Pan P.Y.
        • Ma G.
        • Weber K.J.
        • et al.
        Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer.
        Cancer Res. 2010; 70: 99-108
        • Serafini P.
        • Mgebroff S.
        • Noonan K.
        • et al.
        Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells.
        Cancer Res. 2008; 68: 5439-5449
        • Plaks V.
        • Birnberg T.
        • Berkutzki T.
        • et al.
        Uterine DCs are crucial for decidua formation during embryo implantation in mice.
        J Clin Invest. 2008; 118: 3954-3965
        • Collins M.K.
        • Tay C.S.
        • Erlebacher A.
        Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice.
        J Clin Invest. 2009; 119: 2062-2073
        • Tagliani E.
        • Erlebacher A.
        Dendritic cell function at the fetomaternal interface.
        Expert Rev Clin Immunol. 2011; 7: 593-602
        • Guerin L.R.
        • Prins J.R.
        • Robertson S.A.
        Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment?.
        Hum Reprod Update. 2009; 15: 517-535
        • La Rocca C.
        • Carbone F.
        • Longobardi S.
        • et al.
        The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus.
        Immunol Lett. 2014; 162: 41-48
        • Shima T.
        • Sasaki Y.
        • Itoh M.
        • et al.
        Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice.
        J Reprod Immunol. 2010; 85: 121-129
        • Alijotas-Reig J.
        • Llurba E.
        • Gris J.M.
        Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells.
        Placenta. 2014; 35: 241-248
        • Wang W.J.
        • Liu F.J.
        • Xin L.
        • et al.
        Adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells reverses the increase in abortion rate caused by interleukin 17 in the CBA/JxBALB/c mouse model.
        Hum Reprod. 2014; 29: 946-952
        • Zenclussen M.L.
        • Thuere C.
        • Ahmad N.
        • et al.
        The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy.
        Am J Reprod Immunol. 2010; 63: 200-208
        • Samstein R.M.
        • Josefowicz S.Z.
        • Arvey A.
        • et al.
        Extrathymic generation of regulatory T cells in placental mammals mitigates fetomaternal conflict.
        Cell. 2012; 150: 29-38
        • Jensen F.
        • Muzzio D.
        • Soldati R.
        • et al.
        Regulatory B10 cells restore pregnancy tolerance in a mouse model.
        Biol Reprod. 2013; 89: 90
        • Rolle L.
        • Memarzadeh Tehran M.
        • Morell-Garcia A.
        • et al.
        Cutting edge: IL-10-producing regulatory B cells in early human pregnancy.
        Am J Reprod Immunol. 2013; 70: 448-453
        • Muzzio D.O.
        • Ziegler K.B.
        • Ehrhardt J.
        • et al.
        Marginal zone B cells emerge as a critical component of pregnancy well-being.
        Reproduction. 2016; 151: 29-37
        • Lima J.
        • Martins C.
        • Leandro M.J.
        • et al.
        Characterization of B cells in healthy pregnant women from late pregnancy to post-partum: a prospective observational study.
        BMC Pregnancy Childbirth. 2016; 16: 139
        • Guzman-Genuino R.M.
        • Diener K.R.
        Regulatory B cells in pregnancy: lessons from autoimmunity, graft tolerance, and cancer.
        Front Immunol. 2017; 8: 172
        • Xu Y.Y.
        • Wang S.C.
        • Li D.J.
        • et al.
        Co-signaling molecules in fetomaternal immunity.
        Trends Mol Med. 2017; 23: 46-58
        • Schumacher A.
        Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance.
        Int J Mol Sci. 2017; 18 ([pii:E2166])
        • D'Addio F.
        • Riella L.V.
        • Mfarrej B.G.
        • et al.
        The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance.
        J Immunol. 2011; 187: 4530-4541
        • Tripathi S.
        • Guleria I.
        Role of PD1/PDL1 pathway, and TH17 and treg cells in maternal tolerance to the fetus.
        Biomed J. 2015; 38: 25-31
        • Guleria I.
        • Khosroshahi A.
        • Ansari M.J.
        • et al.
        A critical role for the programmed death ligand 1 in fetomaternal tolerance.
        J Exp Med. 2005; 202: 231-237
        • Riella L.
        • Dada S.
        • Chabtini L.
        • et al.
        B7h (ICOS L) maintains tolerance at the fetomaternal interface.
        Am J Pathol. 2013; 182: 2204-2213
        • Chabtini L.
        • Mfarrej B.
        • Mounayar M.
        • et al.
        TIM-3 regulates innate immune cells to induce fetomaternal tolerance.
        J Immunol. 2013; 190: 88-96
        • Qian J.
        • Zhang N.
        • Lin J.
        • et al.
        Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion.
        Biosci Trends. 2018; 12: 157-167
        • Salomon C.
        • Rice G.E.
        Role of exosomes in placental homeostasis and pregnancy disorders.
        Prog Mol Biol Transl Sci. 2017; 145: 163-179
        • Sarker S.
        • Scholz-Romero K.
        • Perez A.
        • et al.
        Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy.
        J Transl Med. 2014; 12: 204
        • Mitchell M.D.
        • Peiris H.N.
        • Kobayashi M.
        • et al.
        Placental exosomes in normal and complicated pregnancy.
        Am J Obstet Gynecol. 2015; 213: S173-S181
        • Pillay P.
        • Moodley K.
        • Moodley J.
        • et al.
        Placenta-derived exosomes: potential biomarkers of preeclampsia.
        Int J Nanomedicine. 2017; 12: 8009-8023
        • Tsochandaridis M.
        • Nasca L.
        • Toga C.
        • et al.
        Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications.
        Biomed Res Int. 2015; 2015: 294954
        • Gilad S.
        • Meiri E.
        • Yogev Y.
        • et al.
        Serum microRNAs are promising novel biomarkers.
        PLoS One. 2008; 3: e3148
        • Agrawal S.
        • Cerdeira A.S.
        • Redman C.
        • et al.
        Meta-analysis and systematic review to assess the role of soluble FMS-Like tyrosine kinase-1 and placenta growth factor ratio in prediction of preeclampsia: the SaPPPhirE study.
        Hypertension. 2018; 71: 306-316