Advertisement
Review Article| Volume 39, ISSUE 1, P1-13, March 2019

Regulatory T Cells for More Targeted Immunosuppressive Therapies

Published:December 19, 2018DOI:https://doi.org/10.1016/j.cll.2018.11.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sprent J.
        • Webb S.R.
        Intrathymic and extrathymic clonal deletion of T cells.
        Curr Opin Immunol. 1995; 7: 196-205
        • Vijay K.K.
        • Ohashi P.S.
        • Sartor R.B.
        • et al.
        Dysregulation of immune homeostasis in autoimmune diseases.
        Nat Med. 2012; 18: 42
        • Sakaguchi S.
        • Yamaguchi T.
        • Nomura T.
        • et al.
        Regulatory T cells and immune tolerance.
        Cell. 2008; 133: 775-787
        • Gershon R.K.
        • Cohen P.
        • Hencin R.
        • et al.
        Suppressor T cells.
        J Immunol. 1972; 108: 586
        • Penhale W.J.
        • Farmer A.
        • Irvine W.J.
        Thyroiditis in T cell-depleted rats. Influence of strain, radiation dose, adjuvants and antilymphocyte serum.
        Clin Exp Immunol. 1975; 21: 362-375
        • Penhale W.J.
        • Irvine W.J.
        • Inglis J.R.
        • et al.
        Thyroiditis in T cell-depleted rats: suppression of the autoallergic response by reconstitution with normal lymphoid cells.
        Clin Exp Immunol. 1976; 25: 6-16
        • Sakaguchi S.
        • Takahashi T.
        • Nishizuka Y.
        Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis.
        J Exp Med. 1982; 156: 1577-1586
        • Sakaguchi S.
        • Fukuma K.
        • Kuribayashi K.
        • et al.
        Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease.
        J Exp Med. 1985; 161: 72-87
        • Sakaguchi S.
        • Sakaguchi N.
        • Asano M.
        • et al.
        Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.
        J Immunol. 1995; 155: 1151-1164
        • Palomares O.
        • Yaman G.
        • Azkur A.K.
        • et al.
        Role of Treg in immune regulation of allergic diseases.
        Eur J Immunol. 2010; 40: 1232-1240
        • Zheng Y.
        • Chaudhry A.
        • Kas A.
        • et al.
        Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses.
        Nature. 2009; 458: 351-356
        • Yu F.
        • Sharma S.
        • Edwards J.
        • et al.
        Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance.
        Nat Immunol. 2015; 16: 197-206
        • Sakaguchi S.
        The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery.
        J Clin Invest. 2003; 112: 1310-1312
        • Hori S.
        • Nomura T.
        • Sakaguchi S.
        Control of regulatory T cell development by the transcription factor Foxp3.
        Science. 2003; 299: 1057-1061
        • Mason G.M.
        • Lowe K.
        • Melchiotti R.
        • et al.
        Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry.
        J Immunol. 2015; 195: 2030-2037
        • Nie J.
        • Li Y.Y.
        • Zheng S.G.
        • et al.
        FOXP3(+) treg cells and gender bias in autoimmune diseases.
        Front Immunol. 2015; 6: 493
        • Yuan X.
        • Cheng G.
        • Malek T.R.
        The importance of regulatory T-cell heterogeneity in maintaining self-tolerance.
        Immunol Rev. 2014; 259: 103-114
        • Sather B.D.
        • Treuting P.
        • Perdue N.
        • et al.
        Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease.
        J Exp Med. 2007; 204: 1335-1347
        • Svensson M.
        • Marsal J.
        • Ericsson A.
        • et al.
        CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa.
        J Clin Invest. 2002; 110: 1113-1121
        • Hamann A.
        • Andrew D.P.
        • Jablonski-Westrich D.
        • et al.
        Role of alpha 4-integrins in lymphocyte homing to mucosal tissues in vivo.
        J Immunol. 1994; 152: 3282
        • Lee J.H.
        • Kang S.G.
        • Kim C.H.
        FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues.
        J Immunol. 2006; 178: 301-311
        • Huehn J.
        • Siegmund K.
        • Lehmann J.C.
        • et al.
        Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells.
        J Exp Med. 2004; 199: 303-313
        • Beyersdorf N.
        • Ding X.
        • Tietze J.K.
        • et al.
        Characterization of mouse CD4 T cell subsets defined by expression of KLRG1.
        Eur J Immunol. 2007; 37: 3445-3454
        • Haribhai D.
        • Williams J.B.
        • Jia S.
        • et al.
        A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity.
        Immunity. 2011; 35: 109-122
        • Curotto de Lafaille M.A.
        • Lafaille J.J.
        Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?.
        Immunity. 2009; 30: 626-635
        • Liu V.C.
        • Wong L.Y.
        • Jang T.
        • et al.
        Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-.
        J Immunol. 2007; 178: 2883-2892
        • Josefowicz S.Z.
        • Niec R.E.
        • Kim H.Y.
        • et al.
        Extrathymically generated regulatory T cells control mucosal TH2 inflammation.
        Nature. 2012; 482: 395-399
        • Zhou X.
        • Bailey-Bucktrout S.L.
        • Jeker L.T.
        • et al.
        Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo.
        Nat Immunol. 2009; 10: 1000-1007
        • Zhou X.
        • Tang J.
        • Cao H.
        • et al.
        Tissue resident regulatory T cells: novel therapeutic targets for human disease.
        Cell Mol Immunol. 2015; 12: 543-552
        • Sebzda E.
        • Mariathasan S.
        • Ohteki T.
        • et al.
        Selection of the T cell repertoire.
        Annu Rev Immunol. 1999; 17: 829-874
        • Jordan M.S.
        • Boesteanu A.
        • Reed A.J.
        • et al.
        Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide.
        Nat Immunol. 2001; 2: 301-306
        • Shevach E.M.
        Application of IL-2 therapy to target T regulatory cell function.
        Trends Immunol. 2012; 33: 626-632
        • Fontenot J.D.
        • Rasmussen J.P.
        • Gavin M.A.
        • et al.
        A function for interleukin 2 in Foxp3-expressing regulatory T cells.
        Nat Immunol. 2005; 6: 1142-1151
        • Burchill M.A.
        • Yang J.
        • Vogtenhuber C.
        • et al.
        IL-2 receptor -dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells.
        J Immunol. 2006; 178: 280-290
        • Ouyang W.
        • Beckett O.
        • Ma Q.
        • et al.
        Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development.
        Immunity. 2010; 32: 642-653
        • Burchill M.A.
        • Yang J.
        • Vang K.B.
        • et al.
        Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire.
        Immunity. 2008; 28: 112-121
        • Lio C.W.
        • Hsieh C.S.
        A two-step process for thymic regulatory T cell development.
        Immunity. 2008; 28: 100-111
        • Koch M.A.
        • Tucker-Heard G.
        • Perdue N.R.
        • et al.
        The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation.
        Nat Immunol. 2009; 10: 595-602
        • Chen W.
        • Jin W.
        • Hardegen N.
        • et al.
        Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3.
        J Exp Med. 2003; 198: 1875-1886
        • Marie J.C.
        • Letterio J.J.
        • Gavin M.
        • et al.
        TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells.
        J Exp Med. 2005; 201: 1061-1067
        • Davidson T.S.
        • DiPaolo R.J.
        • Andersson J.
        • et al.
        Cutting edge: IL-2 is essential for TGF- -mediated induction of Foxp3+ T regulatory cells.
        J Immunol. 2007; 178: 4022-4026
        • Zheng Y.
        • Rudensky A.Y.
        Foxp3 in control of the regulatory T cell lineage.
        Nat Immunol. 2007; 8: 457-462
        • Lin W.
        • Haribhai D.
        • Relland L.M.
        • et al.
        Regulatory T cell development in the absence of functional Foxp3.
        Nat Immunol. 2007; 8: 359-368
        • Huehn J.
        • Beyer M.
        Epigenetic and transcriptional control of Foxp3+ regulatory T cells.
        Semin Immunol. 2015; 27: 10-18
        • Ohkura N.
        • Hamaguchi M.
        • Morikawa H.
        • et al.
        T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development.
        Immunity. 2012; 37: 785-799
        • Thornton A.M.
        • Shevach E.M.
        CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production.
        J Exp Med. 1998; 188: 287-296
        • Bopp T.
        • Becker C.
        • Klein M.
        • et al.
        Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression.
        J Exp Med. 2007; 204: 1303-1310
        • Gondek D.C.
        • Lu L.F.
        • Quezada S.A.
        • et al.
        Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism.
        J Immunol. 2005; 174: 1783-1786
        • Grossman W.J.
        • Verbsky J.W.
        • Barchet W.
        • et al.
        Human T regulatory cells can use the perforin pathway to cause autologous target cell death.
        Immunity. 2004; 21: 589-601
        • Pandiyan P.
        • Zheng L.
        • Ishihara S.
        • et al.
        CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells.
        Nat Immunol. 2007; 8: 1353-1362
        • Wing K.
        • Onishi Y.
        • Prieto-Martin P.
        • et al.
        CTLA-4 control over Foxp3+ regulatory T cell function.
        Science. 2008; 322: 271-275
        • Josefowicz S.Z.
        • Lu L.F.
        • Rudensky A.Y.
        Regulatory T cells: mechanisms of differentiation and function.
        Annu Rev Immunol. 2012; 30: 531-564
        • Trzonkowski P.
        • Bieniaszewska M.
        • Juścińska J.
        • et al.
        First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127− T regulatory cells.
        Clin Immunol. 2009; 133: 22-26
        • Brunstein C.G.
        • Miller J.S.
        • Cao Q.
        • et al.
        Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics.
        Blood. 2011; 117: 1061
        • Di Ianni M.
        • Falzetti F.
        • Carotti A.
        • et al.
        Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation.
        Best Pract Res Clin Haematol. 2011; 24: 459-466
        • Marek-Trzonkowska N.
        • Mysliwiec M.
        • Dobyszuk A.
        • et al.
        Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children.
        Diabetes Care. 2012; 35: 1817
        • Marek-Trzonkowska N.
        • Myśliwiec M.
        • Dobyszuk A.
        • et al.
        Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up.
        Clin Immunol. 2014; 153: 23-30
        • Sula Karreci E.
        • Eskandari S.K.
        • Dotiwala F.
        • et al.
        Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation.
        JCI Insight. 2017; 2 ([pii:91599])
        • Boyman O.
        • Sprent J.
        The role of interleukin-2 during homeostasis and activation of the immune system.
        Nat Rev Immunol. 2012; 12: 180-190
        • Ahmadzadeh M.
        • Rosenberg S.A.
        IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients.
        Blood. 2006; 107: 2409-2414
        • Saadoun D.
        • Rosenzwajg M.
        • Joly F.
        • et al.
        Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis.
        N Engl J Med. 2011; 365: 2067-2077
        • Koreth J.
        • Matsuoka K.
        • Kim H.T.
        • et al.
        Interleukin-2 and regulatory T cells in graft-versus-host disease.
        N Engl J Med. 2011; 365: 2055-2066
        • Matsuoka K.
        • Koreth J.
        • Kim H.T.
        • et al.
        Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease.
        Sci Transl Med. 2013; 5: 179ra43
        • Kennedy-Nasser A.A.
        • Ku S.
        • Castillo-Caro P.
        • et al.
        Ultra low-dose IL-2 for GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation mediates expansion of regulatory T cells without diminishing antiviral and antileukemic activity.
        Clin Cancer Res. 2014; 20: 2215-2225
        • Koreth J.
        • Kim H.T.
        • Jones K.T.
        • et al.
        Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease.
        Blood. 2016; 128: 130-137
        • Kim N.
        • Jeon Y.W.
        • Nam Y.S.
        • et al.
        Therapeutic potential of low-dose IL-2 in a chronic GVHD patient by in vivo expansion of regulatory T cells.
        Cytokine. 2016; 78: 22-26
        • Castela E.
        • Le Duff F.
        • Butori C.
        • et al.
        Effects of low-dose recombinant interleukin 2 to promote t-regulatory cells in alopecia areata.
        JAMA Dermatol. 2014; 150: 748-751
        • He J.
        • Zhang X.
        • Wei Y.
        • et al.
        Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus.
        Nat Med. 2016; 22: 991-993
        • Theil A.
        • Tuve S.
        • Oelschlägel U.
        • et al.
        Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease.
        Cytotherapy. 2015; 17: 473-486