Advertisement
Review Article| Volume 39, ISSUE 1, P185-195, March 2019

Immunologic Effects of the Microbiota in Organ Transplantation

  • Kevin Rey
    Affiliations
    Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada

    Centre for Cell Biology, Development and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
    Search for articles by this author
  • Jonathan C. Choy
    Correspondence
    Corresponding author. Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
    Affiliations
    Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada

    Centre for Cell Biology, Development and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
    Search for articles by this author
Published:December 17, 2018DOI:https://doi.org/10.1016/j.cll.2018.10.010

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lund L.H.
        • Khush K.K.
        • Cherikh W.S.
        • et al.
        The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time.
        J Hear Lung Transplant. 2017; 36: 1037-1046
        • Macpherson A.J.
        • de Agüero M.G.
        • Ganal-Vonarburg S.C.
        How nutrition and the maternal microbiota shape the neonatal immune system.
        Nat Rev Immunol. 2017; 17: 508-517
        • Braza F.
        • Brouard S.
        • Chadban S.
        • et al.
        Role of TLRs and DAMPs in allograft inflammation and transplant outcomes.
        Nat Rev Nephrol. 2016; 12: 281-290
        • Ishii D.
        • Schenk A.D.
        • Baba S.
        • et al.
        Role of TNFα in early chemokine production and leukocyte infiltration into heart allografts.
        Am J Transplant. 2010; 10: 59-68
        • Fukuzawa N.
        • Schenk A.D.
        • Petro M.
        • et al.
        High renal ischemia temperature increases neutrophil chemoattractant production and tissue injury during reperfusion without an identifiable role for CD4 T cells in the injury.
        Transpl Immunol. 2009; 22: 62-71
        • Iida S.
        • Tsuda H.
        • Tanaka T.
        • et al.
        IL-1 receptor signaling on graft parenchymal cells regulates memory and de novo donor-reactive CD8 T cell responses to cardiac allografts.
        J Immunol. 2016; 196: 2827-2837
        • Setoguchi K.
        • Hattori Y.
        • Iida S.
        • et al.
        Endogenous memory CD8 T cells are activated within cardiac allografts without mediating rejection.
        Am J Transplant. 2013; 13: 2293-2307
        • King C.L.
        • Devitt J.J.
        • Lee T.D.G.
        • et al.
        Neutrophil mediated smooth muscle cell loss precedes allograft vasculopathy.
        J Cardiothorac Surg. 2010; 5: 52
        • So M.
        • Lee T.D.G.
        • Hancock Friesen C.L.
        Neutrophils are responsible for impaired medial smooth muscle cell recovery and exaggerated allograft vasculopathy in aortic allografts exposed to prolonged cold ischemia.
        J Hear Lung Transplant. 2013; 32: 360-367
        • Zhang Z.-X.
        • Huang X.
        • Jiang J.
        • et al.
        Natural killer cells play a critical role in cardiac allograft vasculopathy in an interleukin-6–dependent manner.
        Transplantation. 2014; 98: 1029-1039
        • Steptoe R.J.
        • Patel R.K.
        • Subbotin V.M.
        • et al.
        Comparative analysis of dendritic cell density and total number in commonly transplanted organs: morphometric estimation in normal mice.
        Transpl Immunol. 2000; 8: 49-56
        • Ueta H.
        • Shi C.
        • Miyanari N.
        • et al.
        Systemic transmigration of allosensitizing donor dendritic cells to host secondary lymphoid organs after rat liver transplantation.
        Hepatology. 2008; 47: 1352-1362
        • Celli S.
        • Albert M.L.
        • Bousso P.
        Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy.
        Nat Med. 2011; 17: 744-749
        • Kabelitz D.
        • Herzog W.R.
        • Zanker B.
        • et al.
        Human cytotoxic T lymphocytes. I. Limiting-dilution analysis of alloreactive cytotoxic T-lymphocyte precursor frequencies.
        Scand J Immunol. 1985; 22: 329-335
        • Herrera O.B.
        • Golshayan D.
        • Tibbott R.
        • et al.
        A novel pathway of alloantigen presentation by dendritic cells.
        J Immunol. 2004; 173: 4828-4837
        • Su C.A.
        • Iida S.
        • Abe T.
        • et al.
        Endogenous memory CD8 T cells directly mediate cardiac allograft rejection.
        Am J Transplant. 2014; 14: 568-579
        • Setoguchi K.
        • Schenk A.D.
        • Ishii D.
        • et al.
        LFA-1 antagonism inhibits early infiltration of endogenous memory CD8 T Cells into cardiac allografts and donor-reactive T cell priming.
        Am J Transplant. 2011; 11: 923-935
        • Walch J.M.
        • Zeng Q.
        • Li Q.
        • et al.
        Cognate antigen directs CD8+ T cell migration to vascularized transplants.
        J Clin Invest. 2013; 123: 2663-2671
        • Gorbacheva V.
        • Fan R.
        • Wang X.
        • et al.
        IFN-γ production by memory helper T cells is required for CD40-independent alloantibody responses.
        J Immunol. 2015; 194: 1347-1356
        • Vaughn G.R.
        • Law Y.M.
        • Jorgensen N.W.
        • et al.
        Antibody mediated rejection is associated with worse outcome than acute cellular rejection after pediatric heart transplant.
        J Hear Lung Transplant. 2016; 35: S413
        • Wiseman A.C.
        Immunosuppressive medications.
        Clin J Am Soc Nephrol. 2016; 11: 332-343
        • Wood K.J.
        • Bushell A.
        • Hester J.
        Regulatory immune cells in transplantation.
        Nat Rev Immunol. 2012; 12: 417-430
        • Benghiat F.S.
        • Graca L.
        • Braun M.Y.
        • et al.
        Critical influence of natural regulatory CD25+ T cells on the fate of allografts in the absence of immunosuppression.
        Transplantation. 2005; 79: 648-654
        • Wolf D.
        • Schreiber T.H.
        • Tryphonopoulos P.
        • et al.
        Tregs expanded in vivo by TNFRSF25 agonists promote cardiac allograft survival.
        Transplantation. 2012; 94: 569-574
        • Lal G.
        • Yin N.
        • Xu J.
        • et al.
        Distinct inflammatory signals have physiologically divergent effects on epigenetic regulation of Foxp3 expression and Treg function.
        Am J Transplant. 2011; 11: 203-214
        • Jones N.D.
        • Brook M.O.
        • Carvalho-Gaspar M.
        • et al.
        Regulatory T cells can prevent memory CD8 + T-cell-mediated rejection following polymorphonuclear cell depletion.
        Eur J Immunol. 2010; 40: 3107-3116
        • Ochando J.C.
        • Homma C.
        • Yang Y.
        • et al.
        Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts.
        Nat Immunol. 2006; 7: 652-662
        • Dugast A.-S.
        • Haudebourg T.
        • Coulon F.
        • et al.
        Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion.
        J Immunol. 2008; 180: 7898-7906
        • Lan Y.Y.
        • Wang Z.
        • Raimondi G.
        • et al.
        “Alternatively Activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig.
        J Immunol. 2006; 177: 5868-5877
        • Nicholson J.K.
        • Holmes E.
        • Kinross J.
        • et al.
        Host-gut microbiota metabolic interactions.
        Science. 2012; 336: 1262-1267
        • Rooks M.G.
        • Garrett W.S.
        Gut microbiota, metabolites and host immunity.
        Nat Rev Immunol. 2016; 16: 341-352
        • Hunt K.M.
        • Foster J.A.
        • Forney L.J.
        • et al.
        Characterization of the diversity and temporal stability of bacterial communities in human milk.
        PLoS One. 2011; 6: 1-8
        • Rehbinder E.M.
        • Lødrup Carlsen K.C.
        • Staff A.C.
        • et al.
        Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria?.
        Am J Obstet Gynecol. 2018; 219: 289.e1-e12
        • Del Rio D.
        • Zimetti F.
        • Caffarra P.
        • et al.
        The gut microbial metabolite trimethylamine-N-oxide is present in human cerebrospinal fluid.
        Nutrients. 2017; 9: 2-5
        • McKenney P.T.
        • Pamer E.G.
        From hype to hope: the gut microbiota in enteric infectious disease.
        Cell. 2015; 163: 1326-1332
        • Shamriz O.
        • Mizrahi H.
        • Werbner M.
        • et al.
        Microbiota at the crossroads of autoimmunity.
        Autoimmun Rev. 2016; 15: 859-869
        • Schubert A.M.
        • Sinani H.
        • Schloss P.D.
        Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against clostridium difficile.
        MBio. 2015; 6: 1-10
        • Schuijt T.J.
        • Lankelma J.M.
        • Scicluna B.P.
        • et al.
        The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia.
        Gut. 2016; 65: 575-583
        • Clarke T.B.
        • Davis K.M.
        • Lysenko E.S.
        • et al.
        Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity.
        Nat Med. 2010; 16: 228-231
        • Fagundes C.T.
        • Amaral F.A.
        • Vieira A.T.
        • et al.
        Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice.
        J Immunol. 2012; 188: 1411-1420
        • Kernbauer E.
        • Ding Y.
        • Cadwell K.
        An enteric virus can replace the beneficial function of commensal bacteria.
        Nature. 2014; 516: 94-98
        • Cappon A.
        • Babolin C.
        • Segat D.
        • et al.
        Helicobacter pylori-derived neutrophil-activating protein increases the lifespan of monocytes and neutrophils.
        Cell Microbiol. 2010; 12: 754-764
        • Oh J.Z.
        • Ravindran R.
        • Chassaing B.
        • et al.
        TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination.
        Immunity. 2014; 41: 478-492
        • Gury-BenAri M.
        • Thaiss C.A.
        • Serafini N.
        • et al.
        The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome.
        Cell. 2016; 166: 1231-1246.e13
        • Sonnenberg G.F.
        • Monticelli L.A.
        • Alenghat T.
        • et al.
        Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria.
        Science. 2012; 336: 1321-1325
        • Maeda Y.
        • Kurakawa T.
        • Umemoto E.
        • et al.
        Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine.
        Arthritis Rheumatol. 2016; 68: 2646-2661
        • Berer K.
        • Gerdes L.A.
        • Cekanaviciute E.
        • et al.
        Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice.
        Proc Natl Acad Sci U S A. 2017; 11: 201711233
        • Miyake S.
        • Kim S.
        • Suda W.
        • et al.
        Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters.
        PLoS One. 2015; 10: 1-16
        • Biswas A.
        • Petnicki-Ocwieja T.
        • Kobayashi K.S.
        Nod2: a key regulator linking microbiota to intestinal mucosal immunity.
        J Mol Med. 2012; 90: 15-24
        • Wang J.
        • Shirota Y.
        • Bayik D.
        • et al.
        Effect of TLR agonists on the differentiation and function of human monocytic myeloid-derived suppressor cells.
        J Immunol. 2015; 194: 4215-4221
        • Soto R.
        • Petersen C.
        • Novis C.L.
        • et al.
        Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor.
        Proc Natl Acad Sci U S A. 2017; 114: 5497-5502
        • Hugot J.-P.
        • Chamaillard M.
        • Zouali H.
        • et al.
        Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.
        Nature. 2001; 411: 599-603
        • Ivanov I.I.
        • Frutos R.D.L.
        • Manel N.
        • et al.
        Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine.
        Cell Host Microbe. 2008; 4: 337-349
        • Lee Y.K.
        • Menezes J.S.
        • Umesaki Y.
        • et al.
        Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis.
        Proc Natl Acad Sci U S A. 2011; 108: 4615-4622
        • Yadav S.K.
        • Boppana S.
        • Ito N.
        • et al.
        Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood.
        Proc Natl Acad Sci U S A. 2017; 114: E9318-E9327
        • Yurkovetskiy L.
        • Burrows M.
        • Khan A.
        • et al.
        Gender bias in autoimmunity is influenced by microbiota.
        Immunity. 2013; 39: 400-412
        • Silverman M.
        • Kua L.
        • Tanca A.
        • et al.
        Protective major histocompatibility complex allele prevents type 1 diabetes by shaping the intestinal microbiota early in ontogeny.
        Proc Natl Acad Sci U S A. 2017; 114: 9671-9676
        • Atarashi K.
        • Tanoue T.
        • Oshima K.
        • et al.
        Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.
        Nature. 2013; 500: 232-236
        • Atarashi K.
        • Tanoue T.
        • Shima T.
        • et al.
        Induction of colonic regulatory T cells by indigenous clostridium species.
        Science. 2011; 331: 337-341
        • Narushima S.
        • Sugiura Y.
        • Oshima K.
        • et al.
        Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia.
        Gut Microbes. 2014; 5: 333-339
        • Li Y.N.
        • Huang F.
        • Cheng H.J.
        • et al.
        Intestine-derived Clostridium leptum induces murine tolerogenic dendritic cells and regulatory T cells in vitro.
        Hum Immunol. 2014; 75: 1232-1238
        • Li Y.N.
        • Huang F.
        • Liu L.
        • et al.
        Effect of oral feeding with Clostridium leptum on regulatory T-cell responses and allergic airway inflammation in mice.
        Ann Allergy Asthma Immunol. 2012; 109: 201-207
        • Priyadarshini M.
        • Thomas A.
        • Reisetter A.C.
        • et al.
        Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns.
        Transl Res. 2014; 164: 153-157
        • Park J.
        • Kim M.
        • Kang S.G.
        • et al.
        Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway.
        Mucosal Immunol. 2015; 8: 80-93
        • Tan J.
        • McKenzie C.
        • Vuillermin P.J.
        • et al.
        Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways.
        Cell Rep. 2016; 15: 2809-2824
        • Thorburn A.N.
        • McKenzie C.I.
        • Shen S.
        • et al.
        Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites.
        Nat Commun. 2015; 6: 7320
        • Macia L.
        • Tan J.
        • Vieira A.T.
        • et al.
        Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome.
        Nat Commun. 2015; 6: 1-15
        • Smith P.M.
        • Howitt M.R.
        • Panikov N.
        • et al.
        The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis.
        Science. 2013; 341: 569-573
        • Chang P.V.
        • Hao L.
        • Offermanns S.
        • et al.
        The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.
        Proc Natl Acad Sci U S A. 2014; 111: 2247-2252
        • Needell J.C.
        • Ir D.
        • Robertson C.E.
        • et al.
        Maternal treatment with short-chain fatty acids modulates the intestinal microbiota and immunity and ameliorates type 1 diabetes in the offspring.
        PLoS One. 2017; 12 (Mounier C, ed): e0183786
        • Kamp M.E.
        • Shim R.
        • Nicholls A.J.
        • et al.
        G protein-coupled receptor 43 modulates neutrophil recruitment during acute inflammation.
        PLoS One. 2016; 11: 1-15
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Vieira A.T.
        • Macia L.
        • Galvão I.
        • et al.
        A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout.
        Arthritis Rheumatol. 2015; 67: 1646-1656
        • Round J.L.
        • Mazmanian S.K.
        Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.
        Proc Natl Acad Sci U S A. 2010; 107: 12204-12209
        • Mazmanian S.K.
        • Cui H.L.
        • Tzianabos A.O.
        • et al.
        An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.
        Cell. 2005; 122: 107-118
        • Cobb B.A.
        • Wang Q.
        • Tzianabos A.O.
        • et al.
        Polysaccharide processing and presentation by the MHCII pathway.
        Cell. 2004; 117: 677-687
        • Telesford K.M.
        • Yan W.
        • Ochoa-Reparaz J.
        • et al.
        A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39 + Foxp3 + T cells and T reg function.
        Gut Microbes. 2015; 6: 234-242
        • Ochoa-Reparaz J.
        • Mielcarz D.W.
        • Ditrio L.E.
        • et al.
        Central nervous system demyelinating disease protection by the human commensal bacteroides fragilis depends on polysaccharide a expression.
        J Immunol. 2010; 185: 4101-4108
        • Zanvit P.
        • Konkel J.E.
        • Jiao X.
        • et al.
        Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis.
        Nat Commun. 2015; 6: 8424
        • Hill D.A.
        • Siracusa M.C.
        • Abt M.C.
        • et al.
        Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation.
        Nat Med. 2012; 18: 538-546
        • Russell S.L.
        • Gold M.J.
        • Willing B.P.
        • et al.
        Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma.
        Gut Microbes. 2013; 4: 158-164
        • Russell S.L.
        • Gold M.J.
        • Reynolds L.A.
        • et al.
        Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases.
        J Allergy Clin Immunol. 2015; 135: 100-109.e5
        • Gonzalez-Perez G.
        • Hicks A.L.
        • Tekieli T.M.
        • et al.
        Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity.
        J Immunol. 2016; 196: 3768-3779
        • Bokulich N.A.
        • Chung J.
        • Battaglia T.
        • et al.
        Antibiotics, birth mode, and diet shape microbiome maturation during early life.
        Sci Transl Med. 2016; 8: 1-14
        • Arrieta M.-C.
        • Stiemsma L.T.
        • Dimitriu P.A.
        • et al.
        Early infancy microbial and metabolic alterations affect risk of childhood asthma.
        Sci Transl Med. 2015; 7: 307ra152
        • Jenq R.R.
        • Ubeda C.
        • Taur Y.
        • et al.
        Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation.
        J Exp Med. 2012; 209: 903-911
        • Tawara I.
        • Liu C.
        • Tamaki H.
        • et al.
        Influence of donor microbiota on the severity of experimental graft-versus-host-disease.
        Biol Blood Marrow Transplant. 2013; 19: 164-168
        • Liu C.
        • Frank D.N.
        • Horch M.
        • et al.
        Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors.
        Bone Marrow Transplant. 2017; 52: 1643-1650
        • Farowski F.
        • Bücker V.
        • Vehreschild J.J.
        • et al.
        Impact of choice, timing, sequence and combination of broad-spectrum antibiotics on the outcome of allogeneic haematopoietic stem cell transplantation.
        Bone Marrow Transplant. 2017; 53: 52-57
        • Mathewson N.D.
        • Jenq R.
        • Mathew A.V.
        • et al.
        Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease.
        Nat Immunol. 2016; 17: 505-513
        • Romick-Rosendale L.E.
        • Haslam D.B.
        • Lane A.
        • et al.
        Antibiotic exposure and reduced short chain fatty acid production after hematopoietic stem cell transplant.
        Biol Blood Marrow Transplant. 2018; https://doi.org/10.1016/j.bbmt.2018.07.030
        • Fricke W.F.
        • Maddox C.
        • Song Y.
        • et al.
        Human microbiota characterization in the course of renal transplantation.
        Am J Transplant. 2014; 14: 416-427
        • Lee J.R.
        • Muthukumar T.
        • Dadhania D.
        • et al.
        Gut microbial community structure and complications after kidney transplantation: a pilot study.
        Transplantation. 2014; 98: 697-705
      1. Lee JR, Muthukumar T, Dadhania D, et al. Gut microbiota and tacrolimus dosing in kidney transplantation. Stepkowski S, ed. PLoS One. 2015;10(3):e0122399.

        • Zhang Z.
        • Liu L.
        • Tang H.
        • et al.
        Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice.
        Am J Transplant. 2018; 18: 1646-1656
        • Lei Y.M.
        • Chen L.
        • Wang Y.
        • et al.
        The composition of the microbiota modulates allograft rejection.
        J Clin Invest. 2016; 126: 2736-2744
        • Alhabbab R.
        • Blair P.
        • Elgueta R.
        • et al.
        Diversity of gut microflora is required for the generation of B cell with regulatory properties in a skin graft model.
        Sci Rep. 2015; 5: 1-12
        • Rey K.
        • Manku S.
        • Enns W.
        • et al.
        Disruption of the gut microbiota with antibiotics exacerbates acute vascular rejection.
        Transplantation. 2018; 102: 1085-1095