Advertisement
Review Article| Volume 39, ISSUE 1, P87-106, March 2019

Download started.

Ok

The Role of Costimulatory Pathways in Transplant Tolerance

Published:December 22, 2018DOI:https://doi.org/10.1016/j.cll.2018.10.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ojo A.O.
        • Hanson J.A.
        • Wolfe R.A.
        • et al.
        Long-term survival in renal transplant recipients with graft function.
        Kidney Int. 2000; 57: 307-313
        • Prakash J.
        • Ghosh B.
        • Singh S.
        • et al.
        Causes of death in renal transplant recipients with functioning allograft.
        Indian J Nephrol. 2012; 22: 264-268
        • Bamoulid J.
        • Staeck O.
        • Halleck F.
        • et al.
        The need for minimization strategies: current problems of immunosuppression.
        Transpl Int. 2015; 28: 891-900
        • Silva Jr., H.T.
        • Yang H.C.
        • Meier-Kriesche H.U.
        • et al.
        Long-term follow-up of a phase III clinical trial comparing tacrolimus extended-release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients.
        Transplantation. 2014; 97: 636-641
        • Li X.C.
        • Rothstein D.M.
        • Sayegh M.H.
        Costimulatory pathways in transplantation: challenges and new developments.
        Immunol Rev. 2009; 229: 271-293
        • June C.H.
        • Ledbetter J.A.
        • Linsley P.S.
        • et al.
        Role of the CD28 receptor in T-cell activation.
        Immunol Today. 1990; 11: 211-216
        • McGrath M.M.
        • Najafian N.
        The role of coinhibitory signaling pathways in transplantation and tolerance.
        Front Immunol. 2012; 3: 47
        • Martin-Fontecha A.
        • Lanzavecchia A.
        • Sallusto F.
        Dendritic cell migration to peripheral lymph nodes.
        Handb Exp Pharmacol. 2009; : 31-49
        • Benichou G.
        • Tocco G.
        The road to transplant tolerance is paved with good dendritic cells.
        Eur J Immunol. 2013; 43: 584-588
        • Marino J.
        • Babiker-Mohamed M.H.
        • Crosby-Bertorini P.
        • et al.
        Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation.
        Sci Immunol. 2016; 1: aaf8759
        • Campana S.
        • De Pasquale C.
        • Carrega P.
        • et al.
        Cross-dressing: an alternative mechanism for antigen presentation.
        Immunol Lett. 2015; 168: 349-354
        • Jenkins M.K.
        • Schwartz R.H.
        Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo.
        J Exp Med. 1987; 165: 302-319
        • Adams A.B.
        • Ford M.L.
        • Larsen C.P.
        Costimulation blockade in autoimmunity and transplantation: the CD28 pathway.
        J Immunol. 2016; 197: 2045-2050
        • Marchingo J.M.
        • Kan A.
        • Sutherland R.M.
        • et al.
        T cell signaling. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion.
        Science. 2014; 346: 1123-1127
        • Sprent J.
        • Surh C.D.
        T cell memory.
        Annu Rev Immunol. 2002; 20: 551-579
        • Robinson K.A.
        • Orent W.
        • Madsen J.C.
        • et al.
        Maintaining T cell tolerance of alloantigens: lessons from animal studies.
        Am J Transplant. 2018; 18: 1843-1856
        • Kawai T.
        • Cosimi A.B.
        • Spitzer T.R.
        • et al.
        HLA-mismatched renal transplantation without maintenance immunosuppression.
        N Engl J Med. 2008; 358: 353-361
        • Leventhal J.
        • Abecassis M.
        • Miller J.
        • et al.
        Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation.
        Sci Transl Med. 2012; 4: 124ra28
        • Scandling J.D.
        • Busque S.
        • Shizuru J.A.
        • et al.
        Chimerism, graft survival, and withdrawal of immunosuppressive drugs in HLA matched and mismatched patients after living donor kidney and hematopoietic cell transplantation.
        Am J Transplant. 2015; 15: 695-704
        • Sharpe A.H.
        • Freeman G.J.
        The B7-CD28 superfamily.
        Nat Rev Immunol. 2002; 2: 116-126
        • Buonavista N.
        • Balzano C.
        • Pontarotti P.
        • et al.
        Molecular linkage of the human CTLA4 and CD28 Ig-superfamily genes in yeast artificial chromosomes.
        Genomics. 1992; 13: 856-861
        • Harper K.
        • Balzano C.
        • Rouvier E.
        • et al.
        CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location.
        J Immunol. 1991; 147: 1037-1044
        • Gross J.A.
        • St John T.
        • Allison J.P.
        The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression.
        J Immunol. 1990; 144: 3201-3210
        • Hathcock K.S.
        • Laszlo G.
        • Pucillo C.
        • et al.
        Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function.
        J Exp Med. 1994; 180: 631-640
        • Pentcheva-Hoang T.
        • Egen J.G.
        • Wojnoonski K.
        • et al.
        B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse.
        Immunity. 2004; 21: 401-413
        • Collins A.V.
        • Brodie D.W.
        • Gilbert R.J.
        • et al.
        The interaction properties of costimulatory molecules revisited.
        Immunity. 2002; 17: 201-210
        • Linsley P.S.
        • Greene J.L.
        • Brady W.
        • et al.
        Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors.
        Immunity. 1994; 1: 793-801
        • Sansom D.M.
        • Manzotti C.N.
        • Zheng Y.
        What's the difference between CD80 and CD86?.
        Trends Immunol. 2003; 24: 314-319
        • Michel F.
        • Attal-Bonnefoy G.
        • Mangino G.
        • et al.
        CD28 as a molecular amplifier extending TCR ligation and signaling capabilities.
        Immunity. 2001; 15: 935-945
        • Schneider H.
        • Cai Y.C.
        • Cefai D.
        • et al.
        Mechanisms of CD28 signalling.
        Res Immunol. 1995; 146: 149-154
        • Pages F.
        • Ragueneau M.
        • Rottapel R.
        • et al.
        Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling.
        Nature. 1994; 369: 327-329
        • Harada Y.
        • Tanabe E.
        • Watanabe R.
        • et al.
        Novel role of phosphatidylinositol 3-kinase in CD28-mediated costimulation.
        J Biol Chem. 2001; 276: 9003-9008
        • Bjorgo E.
        • Solheim S.A.
        • Abrahamsen H.
        • et al.
        Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex.
        Mol Cell Biol. 2010; 30: 1660-1672
        • Higo K.
        • Oda M.
        • Morii H.
        • et al.
        Quantitative analysis by surface plasmon resonance of CD28 interaction with cytoplasmic adaptor molecules Grb2, Gads and p85 PI3K.
        Immunol Invest. 2014; 43: 278-291
        • Schneider H.
        • Cai Y.C.
        • Prasad K.V.
        • et al.
        T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras.
        Eur J Immunol. 1995; 25: 1044-1050
        • Thaker Y.R.
        • Schneider H.
        • Rudd C.E.
        TCR and CD28 activate the transcription factor NF-kappaB in T-cells via distinct adaptor signaling complexes.
        Immunol Lett. 2015; 163: 113-119
        • Tuosto L.
        NF-kappaB family of transcription factors: biochemical players of CD28 co-stimulation.
        Immunol Lett. 2011; 135: 1-9
        • Wei M.C.
        • Zong W.X.
        • Cheng E.H.
        • et al.
        Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death.
        Science. 2001; 292: 727-730
        • Lindsten T.
        • Ross A.J.
        • King A.
        • et al.
        The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues.
        Mol Cell. 2000; 6: 1389-1399
        • Hoff H.
        • Knieke K.
        • Cabail Z.
        • et al.
        Surface CD152 (CTLA-4) expression and signaling dictates longevity of CD28null T cells.
        J Immunol. 2009; 182: 5342-5351
        • Boise L.H.
        • Minn A.J.
        • Noel P.J.
        • et al.
        CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity. 1995. 3: 87-98.
        J Immunol. 2010; 185: 3788-3799
        • Boise L.H.
        • Noel P.J.
        • Thompson C.B.
        CD28 and apoptosis.
        Curr Opin Immunol. 1995; 7: 620-625
        • David R.
        • Ma L.
        • Ivetic A.
        • et al.
        T-cell receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue.
        Blood. 2009; 113: 3696-3705
        • Arnold C.R.
        • Pritz T.
        • Brunner S.
        • et al.
        T cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8(+)CD28(+) T cells but not in CD8(+)CD28(-) T cells.
        Exp Gerontol. 2014; 54: 75-83
        • Hamilton K.S.
        • Phong B.
        • Corey C.
        • et al.
        T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10.
        Sci Signal. 2014; 7: ra55
        • Harada Y.
        • Tokushima M.
        • Matsumoto Y.
        • et al.
        Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo.
        J Immunol. 2001; 166: 3797-3803
        • Akieda Y.
        • Wakamatsu E.
        • Nakamura T.
        • et al.
        Defects in regulatory T cells due to CD28 deficiency induce a qualitative change of allogeneic immune response in chronic graft-versus-host disease.
        J Immunol. 2015; 194: 4162-4174
        • Yamada A.
        • Kishimoto K.
        • Dong V.M.
        • et al.
        CD28-independent costimulation of T cells in alloimmune responses.
        J Immunol. 2001; 167: 140-146
        • Maier S.
        • Tertilt C.
        • Chambron N.
        • et al.
        Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice.
        Nat Med. 2001; 7: 557-562
        • Mandelbrot D.A.
        • Furukawa Y.
        • McAdam A.J.
        • et al.
        Expression of B7 molecules in recipient, not donor, mice determines the survival of cardiac allografts.
        J Immunol. 1999; 163: 3753-3757
        • Bour-Jordan H.
        • Bluestone J.A.
        Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells.
        Immunol Rev. 2009; 229: 41-66
        • Tang Q.
        • Henriksen K.J.
        • Boden E.K.
        • et al.
        Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells.
        J Immunol. 2003; 171: 3348-3352
        • Salomon B.
        • Lenschow D.J.
        • Rhee L.
        • et al.
        B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes.
        Immunity. 2000; 12: 431-440
        • Tai X.
        • Cowan M.
        • Feigenbaum L.
        • et al.
        CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2.
        Nat Immunol. 2005; 6: 152-162
        • Sempowski G.D.
        • Cross S.J.
        • Heinly C.S.
        • et al.
        CD7 and CD28 are required for murine CD4+CD25+ regulatory T cell homeostasis and prevention of thyroiditis.
        J Immunol. 2004; 172: 787-794
        • Heinly C.S.
        • Sempowski G.D.
        • Lee D.M.
        • et al.
        Comparison of thymocyte development and cytokine production in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient mice.
        Int Immunol. 2001; 13: 157-166
        • Zhang R.
        • Huynh A.
        • Whitcher G.
        • et al.
        An obligate cell-intrinsic function for CD28 in tregs.
        J Clin Invest. 2013; 123: 580-593
        • Esensten J.H.
        • Helou Y.A.
        • Chopra G.
        • et al.
        CD28 Costimulation: from mechanism to therapy.
        Immunity. 2016; 44: 973-988
        • Mead K.I.
        • Zheng Y.
        • Manzotti C.N.
        • et al.
        Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells.
        J Immunol. 2005; 174: 4803-4811
        • Alegre M.L.
        • Noel P.J.
        • Eisfelder B.J.
        • et al.
        Regulation of surface and intracellular expression of CTLA4 on mouse T cells.
        J Immunol. 1996; 157: 4762-4770
        • Guinan E.C.
        • Gribben J.G.
        • Boussiotis V.A.
        • et al.
        Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity.
        Blood. 1994; 84: 3261-3282
        • Linsley P.S.
        • Brady W.
        • Urnes M.
        • et al.
        CTLA-4 is a second receptor for the B cell activation antigen B7.
        J Exp Med. 1991; 174: 561-569
        • Crepeau R.L.
        • Ford M.L.
        Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity.
        Expert Opin Biol Ther. 2017; 17: 1001-1012
        • Read S.
        • Malmstrom V.
        • Powrie F.
        Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation.
        J Exp Med. 2000; 192: 295-302
        • Waterhouse P.
        • Penninger J.M.
        • Timms E.
        • et al.
        Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.
        Science. 1995; 270: 985-988
        • Tai X.
        • Van Laethem F.
        • Sharpe A.H.
        • et al.
        Induction of autoimmune disease in CTLA-4-/- mice depends on a specific CD28 motif that is required for in vivo costimulation.
        Proc Natl Acad Sci U S A. 2007; 104: 13756-13761
        • Walunas T.L.
        • Bakker C.Y.
        • Bluestone J.A.
        CTLA-4 ligation blocks CD28-dependent T cell activation.
        J Exp Med. 1996; 183: 2541-2550
        • Schneider H.
        • Smith X.
        • Liu H.
        • et al.
        CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization.
        Eur J Immunol. 2008; 38: 40-47
        • Walker L.S.
        • Sansom D.M.
        Confusing signals: recent progress in CTLA-4 biology.
        Trends Immunol. 2015; 36: 63-70
        • Misra N.
        • Bayry J.
        • Lacroix-Desmazes S.
        • et al.
        Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells.
        J Immunol. 2004; 172: 4676-4680
        • Qureshi O.S.
        • Zheng Y.
        • Nakamura K.
        • et al.
        Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4.
        Science. 2011; 332: 600-603
        • Lenschow D.J.
        • Zeng Y.
        • Thistlethwaite J.R.
        • et al.
        Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg.
        Science. 1992; 257: 789-792
        • Pearson T.C.
        • Alexander D.Z.
        • Winn K.J.
        • et al.
        Transplantation tolerance induced by CTLA4-Ig.
        Transplantation. 1994; 57: 1701-1706
        • Azuma H.
        • Chandraker A.
        • Nadeau K.
        • et al.
        Blockade of T-cell costimulation prevents development of experimental chronic renal allograft rejection.
        Proc Natl Acad Sci U S A. 1996; 93: 12439-12444
        • Yamada A.
        • Murakami M.
        • Ijima K.
        • et al.
        Long-term acceptance of major histocompatibility complex-mismatched cardiac allograft induced by a low dose of CTLA4IgM plus FK506.
        Microbiol Immunol. 1996; 40: 513-518
        • Uehara M.
        • Solhjou Z.
        • Banouni N.
        • et al.
        Ischemia augments alloimmune injury through IL-6-driven CD4(+) alloreactivity.
        Sci Rep. 2018; 8: 2461
        • Kremer J.M.
        • Westhovens R.
        • Leon M.
        • et al.
        Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig.
        N Engl J Med. 2003; 349: 1907-1915
        • Levisetti M.G.
        • Padrid P.A.
        • Szot G.L.
        • et al.
        Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation.
        J Immunol. 1997; 159: 5187-5191
        • Vincenti F.
        • Charpentier B.
        • Vanrenterghem Y.
        • et al.
        A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study).
        Am J Transplant. 2010; 10: 535-546
        • Vincenti F.
        • Larsen C.P.
        • Alberu J.
        • et al.
        Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients.
        Am J Transplant. 2012; 12: 210-217
        • Badell I.R.
        • La Muraglia 2nd, G.M.
        • Liu D.
        • et al.
        Selective CD28 blockade results in superior inhibition of donor-specific T follicular helper cell and antibody responses relative to CTLA4-Ig.
        Am J Transplant. 2018; 18: 89-101
        • Leibler C.
        • Thiolat A.
        • Henique C.
        • et al.
        Control of humoral response in renal transplantation by belatacept depends on a direct effect on B cells and impaired T follicular helper-B cell crosstalk.
        J Am Soc Nephrol. 2018; 29: 1049-1062
        • Lin H.
        • Rathmell J.C.
        • Gray G.S.
        • et al.
        Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28.
        J Exp Med. 1998; 188: 199-204
        • Krummey S.M.
        • Floyd T.L.
        • Liu D.
        • et al.
        Candida-elicited murine Th17 cells express high Ctla-4 compared with Th1 cells and are resistant to costimulation blockade.
        J Immunol. 2014; 192: 2495-2504
        • Ying H.
        • Yang L.
        • Qiao G.
        • et al.
        Cutting edge: CTLA-4–B7 interaction suppresses Th17 cell differentiation.
        J Immunol. 2010; 185: 1375-1378
        • Riella L.V.
        • Liu T.
        • Yang J.
        • et al.
        Deleterious effect of CTLA4-Ig on a Treg-dependent transplant model.
        Am J Transplant. 2012; 12: 846-855
        • Levitsky J.
        • Miller J.
        • Huang X.
        • et al.
        Inhibitory effects of belatacept on allospecific regulatory T-cell generation in humans.
        Transplantation. 2013; 96: 689-696
        • Yamada Y.
        • Boskovic S.
        • Aoyama A.
        • et al.
        Overcoming memory T-cell responses for induction of delayed tolerance in nonhuman primates.
        Am J Transplant. 2012; 12: 330-340
        • Hotta K.
        • Oura T.
        • Dehnadi A.
        • et al.
        Long-term nonhuman primate renal allograft survival without ongoing immunosuppression in recipients of delayed donor bone marrow transplantation.
        Transplantation. 2018; 102: e128-e136
        • Mou D.
        • Espinosa J.
        • Lo D.J.
        • et al.
        CD28 negative T cells: is their loss our gain?.
        Am J Transplant. 2014; 14: 2460-2466
        • Durrbach A.
        • Pestana J.M.
        • Pearson T.
        • et al.
        A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study).
        Am J Transplant. 2010; 10: 547-557
        • Xu H.
        • Perez S.D.
        • Cheeseman J.
        • et al.
        The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation.
        Am J Transplant. 2014; 14: 319-332
        • Espinosa J.
        • Herr F.
        • Tharp G.
        • et al.
        CD57(+) CD4 T cells underlie belatacept-resistant allograft rejection.
        Am J Transplant. 2016; 16: 1102-1112
        • Lo D.J.
        • Weaver T.A.
        • Stempora L.
        • et al.
        Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression.
        Am J Transplant. 2011; 11: 22-33
        • Strioga M.
        • Pasukoniene V.
        • Characiejus D.
        CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease.
        Immunology. 2011; 134: 17-32
        • Trzonkowski P.
        • Zilvetti M.
        • Chapman S.
        • et al.
        Homeostatic repopulation by CD28-CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression.
        Am J Transplant. 2008; 8: 338-347
        • Lin Y.X.
        • Yan L.N.
        • Li B.
        • et al.
        A significant expansion of CD8+ CD28- T-suppressor cells in adult-to-adult living donor liver transplant recipients.
        Transplant Proc. 2009; 41: 4229-4231
        • Colovai A.I.
        • Mirza M.
        • Vlad G.
        • et al.
        Regulatory CD8+CD28- T cells in heart transplant recipients.
        Hum Immunol. 2003; 64: 31-37
        • Suntharalingam G.
        • Perry M.R.
        • Ward S.
        Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412.
        N Engl J Med. 2006; 355: 1018-1028
        • Liu D.
        • Krummey S.M.
        • Badell I.R.
        • et al.
        2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses.
        J Exp Med. 2014; 211: 297-311
        • Liu D.
        • Suchard S.J.
        • Nadler S.G.
        • et al.
        Inhibition of donor-reactive CD8+ T cell responses by selective CD28 blockade is independent of reduced ICOS expression.
        PLoS One. 2015; 10: e0130490
        • Poirier N.
        • Azimzadeh A.M.
        • Zhang T.
        • et al.
        Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation.
        Sci Transl Med. 2010; 2: 17ra10
        • Shi R.
        • Honczarenko M.
        • Zhang S.
        • et al.
        Pharmacokinetic, pharmacodynamic, and safety profile of a novel Anti-CD28 domain antibody antagonist in healthy subjects.
        J Clin Pharmacol. 2017; 57: 161-172
        • Poirier N.
        • Dilek N.
        • Mary C.
        • et al.
        FR104, an antagonist anti-CD28 monovalent fab' antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft.
        Am J Transplant. 2015; 15: 88-100
        • Hippen K.L.
        • Watkins B.
        • Tkachev V.
        • et al.
        Preclinical testing of antihuman CD28 Fab' antibody in a novel nonhuman primate small animal rodent model of xenogenic graft-versus-host disease.
        Transplantation. 2016; 100: 2630-2639
        • Poirier N.
        • Blancho G.
        • Hiance M.
        • et al.
        First-in-human study in healthy subjects with FR104, a pegylated monoclonal antibody fragment antagonist of CD28.
        J Immunol. 2016; 197: 4593-4602
        • Vogel L.A.
        • Noelle R.J.
        CD40 and its crucial role as a member of the TNFR family.
        Semin Immunol. 1998; 10: 435-442
        • Torres R.M.
        • Clark E.A.
        Differential increase of an alternatively polyadenylated mRNA species of murine CD40 upon B lymphocyte activation.
        J Immunol. 1992; 148: 620-626
        • Armitage R.J.
        • Fanslow W.C.
        • Strockbine L.
        • et al.
        Molecular and biological characterization of a murine ligand for CD40.
        Nature. 1992; 357: 80-82
        • Kean L.S.
        • Turka L.A.
        • Blazar B.R.
        Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy.
        Immunol Rev. 2017; 276: 192-212
        • Pinelli D.F.
        • Ford M.L.
        Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance.
        Immunotherapy. 2015; 7: 399-410
        • Liu D.
        • Ferrer I.R.
        • Konomos M.
        • et al.
        Inhibition of CD8+ T cell-derived CD40 signals is necessary but not sufficient for Foxp3+ induced regulatory T cell generation in vivo.
        J Immunol. 2013; 191: 1957-1964
        • Ochando J.C.
        • Homma C.
        • Yang Y.
        • et al.
        Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts.
        Nat Immunol. 2006; 7: 652-662
        • Hancock W.W.
        • Sayegh M.H.
        • Zheng X.G.
        • et al.
        Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection.
        Proc Natl Acad Sci U S A. 1996; 93: 13967-13972
        • Pinelli D.F.
        • Wagener M.E.
        • Liu D.
        • et al.
        An anti-CD154 domain antibody prolongs graft survival and induces Foxp3(+) iTreg in the absence and presence of CTLA-4 Ig.
        Am J Transplant. 2013; 13: 3021-3030
        • Kirk A.D.
        • Burkly L.C.
        • Batty D.S.
        • et al.
        Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates.
        Nat Med. 1999; 5: 686-693
        • Chen J.
        • Yin H.
        • Xu J.
        • et al.
        Reversing endogenous alloreactive B cell GC responses with anti-CD154 or CTLA-4Ig.
        Am J Transplant. 2013; 13: 2280-2292
        • Kim E.J.
        • Kwun J.
        • Gibby A.C.
        • et al.
        Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection.
        Am J Transplant. 2014; 14: 59-69
        • Ferrer I.R.
        • Wagener M.E.
        • Song M.
        • et al.
        Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade.
        Proc Natl Acad Sci U S A. 2011; 108: 20701-20706
        • Zhu P.
        • Chen Y.F.
        • Chen X.P.
        • et al.
        Mechanisms of survival prolongation of murine cardiac allografts using the treatment of CTLA4-Ig and MR1.
        Transplant Proc. 2008; 40: 1618-1624
        • Larsen C.P.
        • Elwood E.T.
        • Alexander D.Z.
        • et al.
        Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways.
        Nature. 1996; 381: 434-438
        • Kawai T.
        • Andrews D.
        • Colvin R.B.
        • et al.
        Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand.
        Nat Med. 2000; 6: 114
        • Koyama I.
        • Kawai T.
        • Andrews D.
        • et al.
        Thrombophilia associated with anti-CD154 monoclonal antibody treatment and its prophylaxis in nonhuman primates.
        Transplantation. 2004; 77: 460-462
        • Henn V.
        • Slupsky J.R.
        • Grafe M.
        • et al.
        CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.
        Nature. 1998; 391: 591-594
        • Charafeddine A.H.
        • Kim E.J.
        • Maynard D.M.
        • et al.
        Platelet-derived CD154: ultrastructural localization and clinical correlation in organ transplantation.
        Am J Transplant. 2012; 12: 3143-3151
        • Vincenti F.
        What's in the pipeline? New immunosuppressive drugs in transplantation.
        Am J Transplant. 2002; 2: 898-903
        • Okimura K.
        • Maeta K.
        • Kobayashi N.
        • et al.
        Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects.
        Am J Transplant. 2014; 14: 1290-1299
        • Oura T.
        • Yamashita K.
        • Suzuki T.
        • et al.
        Long-term hepatic allograft acceptance based on CD40 blockade by ASKP1240 in nonhuman primates.
        Am J Transplant. 2012; 12: 1740-1754
        • Watanabe M.
        • Yamashita K.
        • Suzuki T.
        • et al.
        ASKP1240, a fully human anti-CD40 monoclonal antibody, prolongs pancreatic islet allograft survival in nonhuman primates.
        Am J Transplant. 2013; 13: 1976-1988
        • Song L.
        • Ma A.
        • Dun H.
        • et al.
        Effects of ASKP1240 combined with tacrolimus or mycophenolate mofetil on renal allograft survival in Cynomolgus monkeys.
        Transplantation. 2014; 98: 267-276
      1. Vincenti F, Yang H, Klintmalm G, et al. Clinical Outcomes in a Phase 1b, Randomized, Double-Blind, Parallel Group, Placebo-Controlled, Single-Dose Study of ASKP1240 in De Novo Kidney Transplantation. American Transplant Congress May 18–22, 2013 in Seattle, Washington. 2013.

      2. Harland R, Klintmalm G, Yang H, et al. ASKP1240 in De Novo kidney transplant recipients. American Transplant Congress May 2–6, 2015 in Philadelphia, Pennsylvania. 2015.

        • Anil Kumar M.S.
        • Papp K.
        • Tainaka R.
        • et al.
        Randomized, controlled study of bleselumab (ASKP1240) pharmacokinetics and safety in patients with moderate-to-severe plaque psoriasis.
        Biopharm Drug Dispos. 2018; 39: 245-255
        • O'Neill N.A.
        • Zhang T.
        • Braileanu G.
        • et al.
        Comparative evaluation of alphaCD40 (2C10R4) and alphaCD154 (5C8H1 and IDEC-131) in a nonhuman primate cardiac allotransplant model.
        Transplantation. 2017; 101: 2038-2047
        • Aoyagi T.
        • Yamashita K.
        • Suzuki T.
        • et al.
        A human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in cynomolgus monkeys: induction and maintenance therapy.
        Am J Transplant. 2009; 9: 1732-1741
        • Cordoba F.
        • Wieczorek G.
        • Audet M.
        • et al.
        A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion.
        Am J Transplant. 2015; 15: 2825-2836
        • Kitchens W.H.
        • Haridas D.
        • Wagener M.E.
        Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8(+) memory T cells.
        Am J Transplant. 2012; 12: 69-80
        • Ford M.L.
        T cell cosignaling molecules in transplantation.
        Immunity. 2016; 44: 1020-1033
        • Kitchens W.H.
        • Larsen C.P.
        • Ford M.L.
        Integrin antagonists for transplant immunosuppression: panacea or peril?.
        Immunotherapy. 2011; 3: 305-307
        • Van Seventer G.A.
        • Shimizu Y.
        • Horgan K.J.
        • et al.
        The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells.
        J Immunol. 1990; 144: 4579-4586
        • Bachmann M.F.
        • McKall-Faienza K.
        • Schmits R.
        • et al.
        Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation.
        Immunity. 1997; 7: 549-557
        • Isobe M.
        • Suzuki J.
        • Yamazaki S.
        • et al.
        Acceptance of primary skin graft after treatment with anti-intercellular adhesion molecule-1 and anti-leukocyte function-associated antigen-1 monoclonal antibodies in mice.
        Transplantation. 1996; 62: 411-413
        • Grazia T.J.
        • Gill R.G.
        • Gelhaus Jr., H.C.
        • et al.
        Perturbation of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 results in differential outcomes in cardiac vs islet allograft survival.
        J Heart Lung Transplant. 2005; 24: 1410-1414
        • Arai K.
        • Sunamura M.
        • Wada Y.
        • et al.
        Preventing effect of anti-ICAM-1 and anti-LFA-1 monoclonal antibodies on murine islet allograft rejection.
        Int J Pancreatol. 1999; 26: 23-31
        • Badell I.R.
        • Russell M.C.
        • Thompson P.W.
        • et al.
        LFA-1-specific therapy prolongs allograft survival in rhesus macaques.
        J Clin Invest. 2010; 120: 4520-4531
        • Kitchens W.H.
        • Haridas D.
        • Wagener M.E.
        • et al.
        Combined costimulatory and leukocyte functional antigen-1 blockade prevents transplant rejection mediated by heterologous immune memory alloresponses.
        Transplantation. 2012; 93: 997-1005
        • Anderson D.J.
        • Lo D.J.
        • Leopardi F.
        • et al.
        Anti-leukocyte function-associated antigen 1 therapy in a nonhuman primate renal transplant model of costimulation blockade-resistant rejection.
        Am J Transplant. 2016; 16: 1456-1464
        • Samy K.P.
        • Anderson D.J.
        • Lo D.J.
        • et al.
        Selective targeting of high-affinity LFA-1 does not augment costimulation blockade in a nonhuman primate renal transplantation model.
        Am J Transplant. 2017; 17: 1193-1203
        • Posselt A.M.
        • Bellin M.D.
        • Tavakol M.
        • et al.
        Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab.
        Am J Transplant. 2010; 10: 1870-1880
        • Vincenti F.
        • Mendez R.
        • Pescovitz M.
        • et al.
        A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation.
        Am J Transplant. 2007; 7: 1770-1777
        • Schwab N.
        • Ulzheimer J.C.
        • Fox R.J.
        • et al.
        Fatal PML associated with efalizumab therapy: insights into integrin alphaLbeta2 in JC virus control.
        Neurology. 2012; 78 ([discussion: 465]): 458-467
        • Mages H.W.
        • Hutloff A.
        • Heuck C.
        • et al.
        Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand.
        Eur J Immunol. 2000; 30: 1040-1047
        • McAdam A.J.
        • Chang T.T.
        • Lumelsky A.E.
        • et al.
        Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells.
        J Immunol. 2000; 165: 5035-5040
        • Yoshinaga S.K.
        • Whoriskey J.S.
        • Khare S.D.
        • et al.
        T-cell co-stimulation through B7RP-1 and ICOS.
        Nature. 1999; 402: 827-832
        • Haynes N.M.
        • Allen C.D.
        • Lesley R.
        • et al.
        Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation.
        J Immunol. 2007; 179: 5099-5108
        • Fazilleau N.
        • McHeyzer-Williams L.J.
        • Rosen H.
        • et al.
        The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding.
        Nat Immunol. 2009; 10: 375-384
        • Sacquin A.
        • Gador M.
        • Fazilleau N.
        The strength of BCR signaling shapes terminal development of follicular helper T cells in mice.
        Eur J Immunol. 2017; 47: 1295-1304
        • Nanji S.A.
        • Hancock W.W.
        • Anderson C.C.
        • et al.
        Multiple combination therapies involving blockade of ICOS/B7RP-1 costimulation facilitate long-term islet allograft survival.
        Am J Transplant. 2004; 4: 526-536
        • Ozkaynak E.
        • Gao W.
        • Shemmeri N.
        • et al.
        Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection.
        Nat Immunol. 2001; 2: 591-596
        • Nanji S.A.
        • Hancock W.W.
        • Anderson C.C.
        • et al.
        Combination therapy with anti-ICOS and cyclosporine enhances cardiac but not islet allograft survival.
        Transplant Proc. 2003; 35: 2477-2478
        • Lo D.J.
        • Anderson D.J.
        • Song M.
        • et al.
        A pilot trial targeting the ICOS-ICOS-L pathway in nonhuman primate kidney transplantation.
        Am J Transplant. 2015; 15: 984-992
        • Sullivan B.A.
        • Tsuji W.
        • Kivitz A.
        • et al.
        Inducible T-cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus.
        Lupus Sci Med. 2016; 3: e000146
        • Gramaglia I.
        • Weinberg A.D.
        • Lemon M.
        • et al.
        Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses.
        J Immunol. 1998; 161: 6510-6517
        • Godfrey W.R.
        • Fagnoni F.F.
        • Harara M.A.
        • et al.
        Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor.
        J Exp Med. 1994; 180: 757-762
        • Imura A.
        • Hori T.
        • Imada K.
        • et al.
        The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells.
        J Exp Med. 1996; 183: 2185-2195
        • Pippig S.D.
        • Pena-Rossi C.
        • Long J.
        • et al.
        Robust B cell immunity but impaired T cell proliferation in the absence of CD134 (OX40).
        J Immunol. 1999; 163: 6520-6529
        • Rogers P.R.
        • Song J.
        • Gramaglia I.
        • et al.
        OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells.
        Immunity. 2001; 15: 445-455
        • Zhang X.
        • Xiao X.
        • Lan P.
        • et al.
        OX40 costimulation inhibits Foxp3 expression and Treg induction via BATF3-dependent and independent mechanisms.
        Cell Rep. 2018; 24: 607-618
        • Xiao X.
        • Kroemer A.
        • Gao W.
        • et al.
        OX40/OX40L costimulation affects induction of Foxp3+ regulatory T cells in part by expanding memory T cells in vivo.
        J Immunol. 2008; 181: 3193-3201
        • Vu M.D.
        • Xiao X.
        • Gao W.
        • et al.
        OX40 costimulation turns off Foxp3+ tregs.
        Blood. 2007; 110: 2501-2510
        • Demirci G.
        • Amanullah F.
        • Kewalaramani R.
        • et al.
        Critical role of OX40 in CD28 and CD154-independent rejection.
        J Immunol. 2004; 172: 1691-1698
        • Kinnear G.
        • Wood K.J.
        • Marshall D.
        • et al.
        Anti-OX40 prevents effector T-cell accumulation and CD8+ T-cell mediated skin allograft rejection.
        Transplantation. 2010; 90: 1265-1271
        • Tsukada N.
        • Akiba H.
        • Kobata T.
        • et al.
        Blockade of CD134 (OX40)-CD134L interaction ameliorates lethal acute graft-versus-host disease in a murine model of allogeneic bone marrow transplantation.
        Blood. 2000; 95: 2434-2439
        • Kinnear G.
        • Wood K.J.
        • Fallah-Arani F.
        • et al.
        A diametric role for OX40 in the response of effector/memory CD4+ T cells and regulatory T cells to alloantigen.
        J Immunol. 2013; 191: 1465-1475