Advertisement
Review Article| Volume 39, ISSUE 1, P125-143, March 2019

MicroRNAs and Transplantation

  • Zahraa Khan
    Affiliations
    Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian–Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA

    Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian–Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
    Search for articles by this author
  • Manikkam Suthanthiran
    Affiliations
    Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian–Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA

    Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian–Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
    Search for articles by this author
  • Thangamani Muthukumar
    Correspondence
    Corresponding author.
    Affiliations
    Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian–Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA

    Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian–Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
    Search for articles by this author
Published:December 22, 2018DOI:https://doi.org/10.1016/j.cll.2018.10.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ha M.
        • Kim V.N.
        Regulation of microRNA biogenesis.
        Nat Rev Mol Cell Biol. 2014; 15: 509-524
        • Ambros V.
        • Bartel B.
        • Bartel D.P.
        • et al.
        A uniform system for microRNA annotation.
        RNA. 2003; 9: 277-279
        • Desvignes T.
        • Batzel P.
        • Berezikov E.
        • et al.
        miRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants.
        Trends Genet. 2015; 31: 613-626
        • Cai X.
        • Hagedorn C.H.
        • Cullen B.R.
        Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.
        RNA. 2004; 10: 1957-1966
        • Yi R.
        • Qin Y.
        • Macara I.G.
        • et al.
        Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.
        Genes Dev. 2003; 17: 3011-3016
        • Wahid F.
        • Shehzad A.
        • Khan T.
        • et al.
        MicroRNAs: synthesis, mechanism, function, and recent clinical trials.
        Biochim Biophys Acta. 2010; 1803: 1231-1243
        • Vidigal J.A.
        • Ventura A.
        The biological functions of miRNAs: lessons from in vivo studies.
        Trends Cell Biol. 2015; 25: 137-147
        • He L.
        • Hannon G.J.
        MicroRNAs: small RNAs with a big role in gene regulation.
        Nat Rev Genet. 2004; 5: 522-531
        • Anglicheau D.
        • Muthukumar T.
        • Suthanthiran M.
        MicroRNAs: small RNAs with big effects.
        Transplantation. 2010; 90: 105-112
        • Turchinovich A.
        • Tonevitsky A.G.
        • Burwinkel B.
        Extracellular miRNA: a collision of two paradigms.
        Trends Biochem Sci. 2016; 41: 883-892
        • Benes V.
        • Castoldi M.
        Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available.
        Methods. 2010; 50: 244-249
        • de Planell-Saguer M.
        • Rodicio M.C.
        Analytical aspects of microRNA in diagnostics: a review.
        Anal Chim Acta. 2011; 699: 134-152
        • Chen C.
        • Ridzon D.A.
        • Broomer A.J.
        • et al.
        Real-time quantification of microRNAs by stem-loop RT-PCR.
        Nucleic Acids Res. 2005; 33: e179
        • Shi R.
        • Chiang V.L.
        Facile means for quantifying microRNA expression by real-time PCR.
        Biotechniques. 2005; 39: 519-525
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat Protoc. 2008; 3: 1101-1108
        • Muthukumar T.
        • Dadhania D.
        • Ding R.
        • et al.
        Messenger RNA for FOXP3 in the urine of renal-allograft recipients.
        N Engl J Med. 2005; 353: 2342-2351
        • Anglicheau D.
        • Sharma V.K.
        • Ding R.
        • et al.
        MicroRNA expression profiles predictive of human renal allograft status.
        Proc Natl Acad Sci U S A. 2009; 106: 5330-5335
        • Ben-Dov I.Z.
        • Muthukumar T.
        • Morozov P.
        • et al.
        MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis.
        Transplantation. 2012; 94: 1086-1094
        • Hindson C.M.
        • Chevillet J.R.
        • Briggs H.A.
        • et al.
        Absolute quantification by droplet digital PCR versus analog real-time PCR.
        Nat Methods. 2013; 10: 1003-1005
        • Obernosterer G.
        • Martinez J.
        • Alenius M.
        Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections.
        Nat Protoc. 2007; 2: 1508-1514
        • Nielsen B.S.
        MicroRNA in situ hybridization.
        Methods Mol Biol. 2012; 822: 67-84
        • Liu C.G.
        • Calin G.A.
        • Volinia S.
        • et al.
        MicroRNA expression profiling using microarrays.
        Nat Protoc. 2008; 3: 563-578
        • Wang Z.
        • Gerstein M.
        • Snyder M.
        RNA-Seq: a revolutionary tool for transcriptomics.
        Nat Rev Genet. 2009; 10: 57-63
        • Hafner M.
        • Landgraf P.
        • Ludwig J.
        • et al.
        Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing.
        Methods. 2008; 44: 3-12
        • Dard-Dascot C.
        • Naquin D.
        • d'Aubenton-Carafa Y.
        • et al.
        Systematic comparison of small RNA library preparation protocols for next-generation sequencing.
        BMC Genomics. 2018; 19: 118
        • Hafner M.
        • Renwick N.
        • Brown M.
        • et al.
        RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries.
        RNA. 2011; 17: 1697-1712
        • Hafner M.
        • Renwick N.
        • Farazi T.A.
        • et al.
        Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing.
        Methods. 2012; 58: 164-170
      1. Illumina. In-depth NGS introduction. Available at: https://www.illumina.com/science/technology/next-generation-sequencing.html. Accessed August 10, 2018.

        • Haas M.
        • Loupy A.
        • Lefaucheur C.
        • et al.
        The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials.
        Am J Transplant. 2018; 18: 293-307
        • Anglicheau D.
        • Suthanthiran M.
        Noninvasive prediction of organ graft rejection and outcome using gene expression patterns.
        Transplantation. 2008; 86: 192-199
        • Hamdorf M.
        • Kawakita S.
        • Everly M.
        The potential of MicroRNAs as novel biomarkers for transplant rejection.
        J Immunol Res. 2017; 2017: 4072364
        • Tomuleasa C.
        • Fuji S.
        • Cucuianu A.
        • et al.
        MicroRNAs as biomarkers for graft-versus-host disease following allogeneic stem cell transplantation.
        Ann Hematol. 2015; 94: 1081-1092
        • Mas V.R.
        • Dumur C.I.
        • Scian M.J.
        • et al.
        MicroRNAs as biomarkers in solid organ transplantation.
        Am J Transplant. 2013; 13: 11-19
        • Seitz H.
        Issues in current microRNA target identification methods.
        RNA Biol. 2017; 14: 831-834
        • Liu B.
        • Li J.
        • Cairns M.J.
        Identifying miRNAs, targets and functions.
        Brief Bioinform. 2014; 15: 1-19
        • Hafner M.
        • Landthaler M.
        • Burger L.
        • et al.
        PAR-CliP–a method to identify transcriptome-wide the binding sites of RNA binding proteins.
        J Vis Exp. 2010; ([pii:2034])
        • Sharma V.K.
        • Bologa R.M.
        • Xu G.P.
        • et al.
        Intragraft TGF-beta 1 mRNA: a correlate of interstitial fibrosis and chronic allograft nephropathy.
        Kidney Int. 1996; 49: 1297-1303
        • Muthukumar T.
        • Lee J.R.
        • Dadhania D.M.
        • et al.
        Allograft rejection and tubulointerstitial fibrosis in human kidney allografts: interrogation by urinary cell mRNA profiling.
        Transplant Rev (Orlando). 2014; 28: 145-154
        • Suthanthiran M.
        • Schwartz J.E.
        • Ding R.
        • et al.
        Urinary-cell mRNA profile and acute cellular rejection in kidney allografts.
        N Engl J Med. 2013; 369: 20-31