Advertisement
Review Article| Volume 38, ISSUE 4, P637-653, December 2018

Diversity of Killer Cell Immunoglobulin-Like Receptors and Disease

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Trinchieri G.
        Biology of natural killer cells.
        Adv Immunol. 1989; 47: 187-376
        • Lee S.H.
        • Miyagi T.
        • Biron C.A.
        Keeping NK cells in highly regulated antiviral warfare.
        Trends Immunol. 2007; 28: 252-259
        • Smyth M.J.
        • Hayakawa Y.
        • Takeda K.
        • et al.
        New aspects of natural-killer-cell surveillance and therapy of cancer.
        Nat Rev Cancer. 2002; 2: 850-861
        • Sun J.C.
        • Beilke J.N.
        • Lanier L.L.
        Adaptive immune features of natural killer cells.
        Nature. 2009; 457: 557-561
        • Gregoire C.
        • Cognet C.
        • Chasson L.
        • et al.
        Intrasplenic trafficking of natural killer cells is redirected by chemokines upon inflammation.
        Eur J Immunol. 2008; 38: 2076-2084
        • Colucci F.
        • Caligiuri M.A.
        • Di Santo J.P.
        What does it take to make a natural killer?.
        Nat Rev Immunol. 2003; 3: 413-425
        • Karre K.
        • Ljunggren H.G.
        • Piontek G.
        • et al.
        Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.
        Nature. 1986; 319: 675-678
        • Ljunggren H.G.
        • Karre K.
        In search of the 'missing self': MHC molecules and NK cell recognition.
        Immunol Today. 1990; 11: 237-244
        • Lanier L.L.
        NK cell recognition.
        Annu Rev Immunol. 2005; 23: 225-274
        • Bryceson Y.T.
        • Long E.O.
        Line of attack: NK cell specificity and integration of signals.
        Curr Opin Immunol. 2008; 20: 344-352
        • Lanier L.L.
        Natural killer cell receptor signaling.
        Curr Opin Immunol. 2003; 15: 308-314
        • McQueen K.L.
        • Parham P.
        Variable receptors controlling activation and inhibition of NK cells.
        Curr Opin Immunol. 2002; 14: 615-621
        • Moretta L.
        • Biassoni R.
        • Bottino C.
        • et al.
        Human NK-cell receptors.
        Immunol Today. 2000; 21: 420-422
        • Vivier E.
        • Raulet D.H.
        • Moretta A.
        • et al.
        Innate or adaptive immunity? The example of natural killer cells.
        Science. 2011; 331: 44-49
        • Lanier L.L.
        NK cell receptors.
        Annu Rev Immunol. 1998; 16: 359-393
        • Long E.O.
        • Barber D.F.
        • Burshtyn D.N.
        • et al.
        Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158).
        Immunol Rev. 2001; 181: 223-233
        • Moretta A.
        • Bottino C.
        • Vitale M.
        • et al.
        Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis.
        Annu Rev Immunol. 2001; 19: 197-223
        • Vilches C.
        • Parham P.
        KIR: diverse, rapidly evolving receptors of innate and adaptive immunity.
        Annu Rev Immunol. 2002; 20: 217-251
        • Wilson M.J.
        • Torkar M.
        • Haude A.
        • et al.
        Plasticity in the organization and sequences of human KIR/ILT gene families.
        Proc Natl Acad Sci U S A. 2000; 97: 4778-4783
        • Trowsdale J.
        Genetic and functional relationships between MHC and NK receptor genes.
        Immunity. 2001; 15: 363-374
        • Marsh S.G.
        • Parham P.
        • Dupont B.
        • et al.
        Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002.
        Tissue Antigens. 2003; 62: 79-86
        • Uhrberg M.
        • Valiante N.M.
        • Shum B.P.
        • et al.
        Human diversity in killer cell inhibitory receptor genes.
        Immunity. 1997; 7: 753-763
        • Hsu K.C.
        • Chida S.
        • Geraghty D.E.
        • et al.
        The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism.
        Immunol Rev. 2002; 190: 40-52
        • Hsu K.C.
        • Liu X.R.
        • Selvakumar A.
        • et al.
        Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets.
        J Immunol. 2002; 169: 5118-5129
        • Shilling H.G.
        • Guethlein L.A.
        • Cheng N.W.
        • et al.
        Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype.
        J Immunol. 2002; 168: 2307-2315
        • Middleton D.
        • Meenagh A.
        • Gourraud P.A.
        KIR haplotype content at the allele level in 77 Northern Irish families.
        Immunogenetics. 2007; 59: 145-158
        • Yawata M.
        • Yawata N.
        • Abi-Rached L.
        • et al.
        Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family.
        Crit Rev Immunol. 2002; 22: 463-482
        • Vierra-Green C.
        • Roe D.
        • Hou L.
        • et al.
        Allele-level haplotype frequencies and pairwise linkage disequilibrium for 14 KIR loci in 506 European-American individuals.
        PLoS One. 2012; 7: e47491
        • Norman P.J.
        • Abi-Rached L.
        • Gendzekhadze K.
        • et al.
        Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes.
        Genome Res. 2009; 19: 757-769
        • Rajalingam R.
        • Du Z.
        • Meenagh A.
        • et al.
        Distinct diversity of KIR genes in three southern Indian populations: comparison with world populations revealed a link between KIR gene content and pre-historic human migrations.
        Immunogenetics. 2008; 60: 207-217
        • Middleton D.
        • Menchaca L.
        • Rood H.
        • et al.
        New allele frequency database: http://www.allelefrequencies.net.
        Tissue Antigens. 2003; 61: 403-407
        • Jiang K.
        • Zhu F.M.
        • Lv Q.F.
        • et al.
        Distribution of killer cell immunoglobulin-like receptor genes in the Chinese Han population.
        Tissue Antigens. 2005; 65: 556-563
        • Yawata M.
        • Yawata N.
        • McQueen K.L.
        • et al.
        Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression.
        Immunogenetics. 2002; 54: 543-550
        • Whang D.H.
        • Park H.
        • Yoon J.A.
        • et al.
        Haplotype analysis of killer cell immunoglobulin-like receptor genes in 77 Korean families.
        Hum Immunol. 2005; 66: 146-154
        • Gendzekhadze K.
        • Norman P.J.
        • Abi-Rached L.
        • et al.
        High KIR diversity in Amerindians is maintained using few gene-content haplotypes.
        Immunogenetics. 2006; 58: 474-480
        • Ewerton P.D.
        • Leite Mde M.
        • Magalhaes M.
        • et al.
        Amazonian Amerindians exhibit high variability of KIR profiles.
        Immunogenetics. 2007; 59: 625-630
        • Toneva M.
        • Lepage V.
        • Lafay G.
        • et al.
        Genomic diversity of natural killer cell receptor genes in three populations.
        Tissue Antigens. 2001; 57: 358-362
        • Rajalingam R.
        • Krausa P.
        • Shilling H.G.
        • et al.
        Distinctive KIR and HLA diversity in a panel of north Indian Hindus.
        Immunogenetics. 2002; 53: 1009-1019
        • Kulkarni S.
        • Single R.M.
        • Martin M.P.
        • et al.
        Comparison of the rapidly evolving KIR locus in Parsis and natives of India.
        Immunogenetics. 2008; 60: 121-129
        • Norman P.J.
        • Abi-Rached L.
        • Gendzekhadze K.
        • et al.
        Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans.
        Nat Genet. 2007; 39: 1092-1099
        • Gardiner C.M.
        • Guethlein L.A.
        • Shilling H.G.
        • et al.
        Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism.
        J Immunol. 2001; 166: 2992-3001
        • Jones D.C.
        • Hiby S.E.
        • Moffett A.
        • et al.
        Nature of allelic sequence polymorphism at the KIR3DL3 locus.
        Immunogenetics. 2006; 58: 614-627
        • Hou L.
        • Chen M.
        • Steiner N.K.
        • et al.
        Seventeen novel alleles add to the already extensive KIR3DL3 diversity.
        Tissue Antigens. 2007; 70: 449-454
        • Yawata M.
        • Yawata N.
        • Draghi M.
        • et al.
        Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function.
        J Exp Med. 2006; 203: 633-645
        • Winter C.C.
        • Gumperz J.E.
        • Parham P.
        • et al.
        Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition.
        J Immunol. 1998; 161: 571-577
        • VandenBussche C.J.
        • Dakshanamurthy S.
        • Posch P.E.
        • et al.
        A single polymorphism disrupts the killer Ig-like receptor 2DL2/2DL3 D1 domain.
        J Immunol. 2006; 177: 5347-5357
        • O'Connor G.M.
        • Guinan K.J.
        • Cunningham R.T.
        • et al.
        Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells.
        J Immunol. 2007; 178: 235-241
        • Carr W.H.
        • Pando M.J.
        • Parham P.
        KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand.
        J Immunol. 2005; 175: 5222-5229
        • Bari R.
        • Bell T.
        • Leung W.H.
        • et al.
        Significant functional heterogeneity among KIR2DL1 alleles and a pivotal role of arginine 245.
        Blood. 2009; 114: 5182-5190
        • Hilton H.G.
        • Vago L.
        • Older Aguilar A.M.
        • et al.
        Mutation at positively selected positions in the binding site for HLA-C shows that KIR2DL1 is a more refined but less adaptable NK cell receptor than KIR2DL3.
        J Immunol. 2012; 189: 1418-1430
        • Steiner N.K.
        • Dakshanamurthy S.
        • Nguyen N.
        • et al.
        Allelic variation of killer cell immunoglobulin-like receptor 2DS5 impacts glycosylation altering cell surface expression levels.
        Hum Immunol. 2014; 75: 124-128
        • Pando M.J.
        • Gardiner C.M.
        • Gleimer M.
        • et al.
        The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1.
        J Immunol. 2003; 171: 6640-6649
        • Klein J.
        • Sato A.
        The HLA system. Second of two parts.
        N Engl J Med. 2000; 343: 782-786
        • Klein J.
        • Sato A.
        The HLA system. First of two parts.
        N Engl J Med. 2000; 343: 702-709
        • Colonna M.
        • Spies T.
        • Strominger J.L.
        • et al.
        Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene.
        Proc Natl Acad Sci U S A. 1992; 89: 7983-7985
        • Colonna M.
        • Borsellino G.
        • Falco M.
        • et al.
        HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells.
        Proc Natl Acad Sci U S A. 1993; 90: 12000-12004
        • Wagtmann N.
        • Biassoni R.
        • Cantoni C.
        • et al.
        Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains.
        Immunity. 1995; 2: 439-449
        • Winter C.C.
        • Long E.O.
        A single amino acid in the p58 killer cell inhibitory receptor controls the ability of natural killer cells to discriminate between the two groups of HLA-C allotypes.
        J Immunol. 1997; 158: 4026-4028
        • Gumperz J.E.
        • Litwin V.
        • Phillips J.H.
        • et al.
        The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor.
        J Exp Med. 1995; 181: 1133-1144
        • Cella M.
        • Longo A.
        • Ferrara G.B.
        • et al.
        NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80.
        J Exp Med. 1994; 180: 1235-1242
        • Thananchai H.
        • Gillespie G.
        • Martin M.P.
        • et al.
        Cutting edge: allele-specific and peptide-dependent interactions between KIR3DL1 and HLA-A and HLA-B.
        J Immunol. 2007; 178: 33-37
        • Pende D.
        • Biassoni R.
        • Cantoni C.
        • et al.
        The natural killer cell receptor specific for HLA-A allotypes: a novel member of the p58/p70 family of inhibitory receptors that is characterized by three immunoglobulin-like domains and is expressed as a 140-kD disulphide-linked dimer.
        J Exp Med. 1996; 184: 505-518
        • Dohring C.
        • Scheidegger D.
        • Samaridis J.
        • et al.
        A human killer inhibitory receptor specific for HLA-A1,2.
        J Immunol. 1996; 156: 3098-3101
        • Hansasuta P.
        • Dong T.
        • Thananchai H.
        • et al.
        Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific.
        Eur J Immunol. 2004; 34: 1673-1679
        • Yawata M.
        • Yawata N.
        • Draghi M.
        • et al.
        MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response.
        Blood. 2008; 112: 2369-2380
        • Moffett A.
        • Colucci F.
        Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction.
        Immunol Rev. 2015; 267: 283-297
        • Rajagopalan S.
        • Bryceson Y.T.
        • Kuppusamy S.P.
        • et al.
        Activation of NK cells by an endocytosed receptor for soluble HLA-G.
        PLoS Biol. 2006; 4: e9
        • Faure M.
        • Long E.O.
        KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential.
        J Immunol. 2002; 168: 6208-6214
        • Yusa S.
        • Catina T.L.
        • Campbell K.S.
        SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells.
        J Immunol. 2002; 168: 5047-5057
        • Carrington M.
        • O'Brien S.J.
        The influence of HLA genotype on AIDS.
        Annu Rev Med. 2003; 54: 535-551
        • Sivori S.
        • Carlomagno S.
        • Falco M.
        • et al.
        Natural killer cells expressing the KIR2DS1-activating receptor efficiently kill T-cell blasts and dendritic cells: implications in haploidentical HSCT.
        Blood. 2011; 117: 4284-4292
        • Chewning J.H.
        • Gudme C.N.
        • Hsu K.C.
        • et al.
        KIR2DS1-positive NK cells mediate alloresponse against the C2 HLA-KIR ligand group in vitro.
        J Immunol. 2007; 179: 854-868
        • Moesta A.K.
        • Abi-Rached L.
        • Norman P.J.
        • et al.
        Chimpanzees use more varied receptors and ligands than humans for inhibitory killer cell Ig-like receptor recognition of the MHC-C1 and MHC-C2 epitopes.
        J Immunol. 2009; 182: 3628-3637
        • Stewart C.A.
        • Laugier-Anfossi F.
        • Vely F.
        • et al.
        Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors.
        Proc Natl Acad Sci U S A. 2005; 102: 13224-13229
        • Saulquin X.
        • Gastinel L.N.
        • Vivier E.
        Crystal structure of the human natural killer cell activating receptor KIR2DS2 (CD158j).
        J Exp Med. 2003; 197: 933-938
        • Montaldo E.
        • Del Zotto G.
        • Della Chiesa M.
        • et al.
        Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function.
        Cytometry A. 2013; 83: 702-713
        • Valiante N.M.
        • Uhrberg M.
        • Shilling H.G.
        • et al.
        Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors.
        Immunity. 1997; 7: 739-751
        • Schonberg K.
        • Sribar M.
        • Enczmann J.
        • et al.
        Analyses of HLA-C-specific KIR repertoires in donors with group A and B haplotypes suggest a ligand-instructed model of NK cell receptor acquisition.
        Blood. 2011; 117: 98-107
        • Santourlidis S.
        • Graffmann N.
        • Christ J.
        • et al.
        Lineage-specific transition of histone signatures in the killer cell Ig-like receptor locus from hematopoietic progenitor to NK cells.
        J Immunol. 2008; 180: 418-425
        • Cichocki F.
        • Lenvik T.
        • Sharma N.
        • et al.
        Cutting edge: KIR antisense transcripts are processed into a 28-base PIWI-like RNA in human NK cells.
        J Immunol. 2010; 185: 2009-2012
        • Raulet D.H.
        • Vance R.E.
        • McMahon C.W.
        Regulation of the natural killer cell receptor repertoire.
        Annu Rev Immunol. 2001; 19: 291-330
        • Anfossi N.
        • Andre P.
        • Guia S.
        • et al.
        Human NK cell education by inhibitory receptors for MHC class I.
        Immunity. 2006; 25: 331-342
        • Kim S.
        • Poursine-Laurent J.
        • Truscott S.M.
        • et al.
        Licensing of natural killer cells by host major histocompatibility complex class I molecules.
        Nature. 2005; 436: 709-713
        • Yokoyama W.M.
        • Kim S.
        How do natural killer cells find self to achieve tolerance?.
        Immunity. 2006; 24: 249-257
        • Raulet D.H.
        • Vance R.E.
        Self-tolerance of natural killer cells.
        Nat Rev Immunol. 2006; 6: 520-531
        • Du Z.
        • Gjertson D.W.
        • Reed E.F.
        • et al.
        Receptor-ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans.
        Immunogenetics. 2007; 59: 1-15
        • Bix M.
        • Liao N.S.
        • Zijlstra M.
        • et al.
        Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice.
        Nature. 1991; 349: 329-331
        • Furukawa H.
        • Yabe T.
        • Watanabe K.
        • et al.
        Tolerance of NK and LAK activity for HLA class I-deficient targets in a TAP1-deficient patient (bare lymphocyte syndrome type I).
        Hum Immunol. 1999; 60: 32-40
        • Yu J.
        • Heller G.
        • Chewning J.
        • et al.
        Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands.
        J Immunol. 2007; 179: 5977-5989
        • Khakoo S.I.
        • Carrington M.
        KIR and disease: a model system or system of models?.
        Immunol Rev. 2006; 214: 186-201
        • Kulkarni S.
        • Martin M.P.
        • Carrington M.
        The Yin and Yang of HLA and KIR in human disease.
        Semin Immunol. 2008; 20: 343-352
        • Rajalingam R.
        Human diversity of killer cell immunoglobulin-like receptors and disease.
        Korean J Hematol. 2011; 46: 216-228
        • Biron C.A.
        • Nguyen K.B.
        • Pien G.C.
        • et al.
        Natural killer cells in antiviral defense: function and regulation by innate cytokines.
        Annu Rev Immunol. 1999; 17: 189-220
        • Orange J.S.
        • Ballas Z.K.
        Natural killer cells in human health and disease.
        Clin Immunol. 2006; 118: 1-10
        • Orange J.S.
        Natural killer cell deficiency.
        J Allergy Clin Immunol. 2013; 132 ([quiz: 26]): 515-525
        • Flores-Villanueva P.O.
        • Yunis E.J.
        • Delgado J.C.
        • et al.
        Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity.
        Proc Natl Acad Sci U S A. 2001; 98: 5140-5145
        • Martin M.P.
        • Gao X.
        • Lee J.H.
        • et al.
        Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS.
        Nat Genet. 2002; 31: 429-434
        • Alter H.J.
        • Seeff L.B.
        Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome.
        Semin Liver Dis. 2000; 20: 17-35
        • Khakoo S.I.
        • Thio C.L.
        • Martin M.P.
        • et al.
        HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection.
        Science. 2004; 305: 872-874
        • Waldhauer I.
        • Steinle A.
        NK cells and cancer immunosurveillance.
        Oncogene. 2008; 27: 5932-5943
        • Zamai L.
        • Ponti C.
        • Mirandola P.
        • et al.
        NK cells and cancer.
        J Immunol. 2007; 178: 4011-4016
        • Carrington M.
        • Wang S.
        • Martin M.P.
        • et al.
        Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci.
        J Exp Med. 2005; 201: 1069-1075
        • Lopez-Vazquez A.
        • Rodrigo L.
        • Martinez-Borra J.
        • et al.
        Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin-like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection.
        J Infect Dis. 2005; 192: 162-165
        • Levinson R.D.
        • Okada A.A.
        • Ashouri E.
        • et al.
        Killer cell immunoglobulin-like receptor gene-cluster 3DS1-2DL5-2DS1-2DS5 predisposes susceptibility to Vogt-Koyanagi-Harada syndrome in Japanese individuals.
        Hum Immunol. 2010; 71: 192-194
        • Appelbaum F.R.
        The current status of hematopoietic cell transplantation.
        Annu Rev Med. 2003; 54: 491-512
        • Ruggeri L.
        • Capanni M.
        • Urbani E.
        • et al.
        Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.
        Science. 2002; 295: 2097-2100
        • Cooley S.
        • Trachtenberg E.
        • Bergemann T.L.
        • et al.
        Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia.
        Blood. 2009; 113: 726-732
        • Hsu K.C.
        • Gooley T.
        • Malkki M.
        • et al.
        KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy.
        Biol Blood Marrow Transplant. 2006; 12: 828-836
        • Stringaris K.
        • Adams S.
        • Uribe M.
        • et al.
        Donor KIR genes 2DL5A, 2DS1 and 3DS1 are associated with a reduced rate of leukaemia relapse after HLA-identical sibling stem cell transplantation for acute myeloid Leukaemia but not other haematological malignancies.
        Biol Blood Marrow Transplant. 2010; 16: 1257-1264
        • Cooley S.
        • Weisdorf D.J.
        • Guethlein L.A.
        • et al.
        Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia.
        Blood. 2010; 116: 2411-2419