Advertisement
Review Article| Volume 38, ISSUE 4, P565-578, December 2018

Human Leukocyte Antigen Typing by Next-Generation Sequencing

Published:October 05, 2018DOI:https://doi.org/10.1016/j.cll.2018.07.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Petersdorf E.W.
        • Hansen J.A.
        • Martin P.J.
        • et al.
        Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation.
        N Engl J Med. 2001; 345: 1794-1800
        • Opelz G.
        • Wujciak T.
        • Dohler B.
        • et al.
        HLA compatibility and organ transplant survival. Collaborative Transplant Study.
        Rev Immunogenet. 1999; 1: 334-342
        • Lee S.J.
        • Klein J.
        • Haagenson M.
        • et al.
        High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation.
        Blood. 2007; 2007: 4576-4583
        • Duquesnoy R.J.
        • Kamoun M.
        • Baxter-Lowe L.A.
        • et al.
        Should HLA mismatch acceptability for sensitized transplant candidates be determined at the high-resolution rather than the antigen level?.
        Am J Transplant. 2015; 15: 923-930
        • Trowsdale J.
        • Knight J.C.
        Major histocompatibility complex genomics and human disease.
        Annu Rev Genomics Hum Genet. 2013; 14: 301-323
        • Blackwell J.M.
        • Jamieson S.E.
        • Burgner D.
        HLA and infectious diseases.
        Clin Microbiol Rev. 2009; 22: 370-385
        • Negrini S.
        • Becquemont L.
        HLA-associated drug hypersensitivity and the prediction of adverse drug reactions.
        Pharmacogenomics. 2017; 18: 1441-1457
        • Robinson J.
        • Halliwell J.A.
        • Hayhurst J.D.
        • et al.
        The IPD and IMGT/HLA database: allele variant databases.
        Nucleic Acids Res. 2015; 43: D423-D431
        • Sanger F.
        • Nicklen S.
        • Coulson A.R.
        DNA sequencing with chain-terminating inhibitors.
        Proc Natl Acad Sci U S A. 1977; 74: 5463-5467
        • Mardis E.R.
        Next-generation sequencing platforms.
        Annu Rev Anal Chem (Palo Alto Calif). 2013; 6: 287-303
        • Hutchison 3rd, C.A.
        DNA sequencing: bench to bedside and beyond.
        Nucleic Acids Res. 2007; 35: 6227-6237
        • Mardis E.R.
        Next-generation DNA sequencing methods.
        Annu Rev Genomics Hum Genet. 2008; 9: 387-402
        • Metzker M.L.
        Sequencing technologies - the next generation.
        Nat Rev Genet. 2010; 11: 31-46
        • Goodwin S.
        • McPherson J.D.
        • McCombie W.R.
        Coming of age: ten years of next-generation sequencing technologies.
        Nat Rev Genet. 2016; 17: 333-351
        • Shendure J.
        • Ji H.
        Next-generation DNA sequencing.
        Nat Biotechnol. 2008; 26: 1135-1145
        • Gabriel C.
        • Furst D.
        • Fae I.
        • et al.
        HLA typing by next-generation sequencing - getting closer to reality.
        Tissue Antigens. 2014; 83: 65-75
      1. Illumina. Illumina sequencing platforms. Description of Illumina sequencers. 2018. Available at: https://www.illumina.com/systems/sequencing-platforms.html. Accessed April 26, 2018.

        • De Santis D.
        • Dinauer D.
        • Duke J.
        • et al.
        16(th) IHIW: review of HLA typing by NGS.
        Int J Immunogenet. 2013; 40: 72-76
        • Duke J.L.
        • Lind C.
        • Mackiewicz K.
        • et al.
        Towards allele-level human leucocyte antigens genotyping – assessing two next-generation sequencing platforms: Ion Torrent Personal Genome Machine and Illumina MiSeq.
        Int J Immunogenet. 2015; 42: 346-358
        • Bentley D.R.
        • Balasubramanian S.
        • Swerdlow H.P.
        • et al.
        Accurate whole human genome sequencing using reversible terminator chemistry.
        Nature. 2008; 456: 53-59
        • Bentley G.
        • Higuchi R.
        • Hoglund B.
        • et al.
        High-resolution, high-throughput HLA genotyping by next-generation sequencing.
        Tissue Antigens. 2009; 74: 393-403
        • Gabriel C.
        • Danzer M.
        • Hackl C.
        • et al.
        Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification.
        Hum Immunol. 2009; 70: 960-964
        • Erlich R.L.
        • Jia X.
        • Anderson S.
        • et al.
        Next-generation sequencing for HLA typing of class I loci.
        BMC Genomics. 2011; 12: 42
        • Holcomb C.L.
        • Hoglund B.
        • Anderson M.W.
        • et al.
        A multi-site study using high-resolution HLA genotyping by next generation sequencing.
        Tissue Antigens. 2011; 77: 206-217
        • Lind C.
        • Ferriola D.
        • Mackiewicz K.
        • et al.
        Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing.
        Hum Immunol. 2010; 71: 1033-1042
        • Walsh P.S.
        • Erlich H.A.
        • Higuchi R.
        Preferential PCR amplification of alleles: mechanisms and solutions.
        PCR Methods Appl. 1992; 1: 241-250
        • Profaizer T.
        • Coonrod E.M.
        • Delgado J.C.
        • et al.
        Report on the effects of fragment size, indexing, and read length on HLA sequencing on the Illumina MiSeq.
        Hum Immunol. 2015; 76: 897-902
        • Duke J.L.
        • Lind C.
        • Mackiewicz K.
        • et al.
        Determining performance characteristics of an NGS-based HLA typing method for clinical applications.
        HLA. 2016; 87: 141-152
        • Weimer E.T.
        • Montgomery M.
        • Petraroia R.
        • et al.
        Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing.
        J Mol Diagn. 2016; 18: 668-675
        • Albrecht V.
        • Zweiniger C.
        • Surendranath V.
        • et al.
        Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles.
        HLA. 2017; 90: 79-87
        • Lan J.H.
        • Yin Y.
        • Reed E.F.
        • et al.
        Impact of three Illumina library construction methods on GC bias and HLA genotype calling.
        Hum Immunol. 2015; 76: 166-175
        • Voelkerding K.V.
        • Dames S.
        • Durtschi J.D.
        Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology.
        J Mol Diagn. 2010; 12: 539-551
        • Head S.R.
        • Komori H.K.
        • LaMere S.A.
        • et al.
        Library construction for next-generation sequencing: overviews and challenges.
        Biotechniques. 2014; 56 (66, 68): 61-64
      2. Illumina. Diagnosing and preventing flow cell overclustering on the MiSeq system. 2015. Available at: https://support.illumina.com/content/dam/illumina-marketing/documents/products/other/miseq-overclustering-primer-770-2014-038.pdf. Accessed December 24, 2015.

        • Ewing B.
        • Hillier L.
        • Wendl M.C.
        • et al.
        Base-calling of automated sequencer traces using Phred. I. Accuracy assessment.
        Genome Res. 1998; 8: 175-185
        • Ewing B.
        • Green P.
        Base-calling of automated sequencer traces using Phred. II. Error probabilities.
        Genome Res. 1998; 8: 186-194
        • Coonrod E.M.
        • Durtschi J.D.
        • Margraf R.L.
        • et al.
        Developing genome and exome sequencing for candidate gene identification in inherited disorders: an integrated technical and bioinformatics approach.
        Arch Pathol Lab Med. 2013; 137: 415-433
        • Sims D.
        • Sudbery I.
        • Ilott N.E.
        • et al.
        Sequencing depth and coverage: key considerations in genomic analyses.
        Nat Rev Genet. 2014; 15: 121-132
        • Sampson J.
        • Jacobs K.
        • Yeager M.
        • et al.
        Efficient study design for next generation sequencing.
        Genet Epidemiol. 2011; 35: 269-277
        • Lander E.S.
        • Linton L.M.
        • Birren B.
        • et al.
        Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921
        • Lu H.
        • Giordano F.
        • Ning Z.
        Oxford nanopore MinION sequencing and genome assembly.
        Genomics Proteomics Bioinformatics. 2016; 14: 265-279
        • Heather J.M.
        • Chain B.
        The sequence of sequencers: the history of sequencing DNA.
        Genomics. 2016; 107: 1-8
        • Erlich H.A.
        HLA typing using next generation sequencing: an overview.
        Hum Immunol. 2015; 76: 887-890
        • Nakano K.
        • Shiroma A.
        • Shimoji M.
        • et al.
        Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
        Hum Cell. 2017; 30: 149-161
        • Mardis E.R.
        DNA sequencing technologies: 2006-2016.
        Nat Protoc. 2017; 12: 213-218
        • Quail M.A.
        • Smith M.
        • Coupland P.
        • et al.
        A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.
        BMC Genomics. 2012; 13: 341
        • Turner T.R.
        • Hayhurst J.D.
        • Hayward D.R.
        • et al.
        Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines.
        HLA. 2018; 91: 88-101
        • Schadt E.E.
        • Turner S.
        • Kasarskis A.
        A window into third-generation sequencing.
        Hum Mol Genet. 2010; 19: R227-R240
        • Clarke J.
        • Wu H.C.
        • Jayasinghe L.
        • et al.
        Continuous base identification for single-molecule nanopore DNA sequencing.
        Nat Nanotechnol. 2009; 4: 265-270
        • Deamer D.
        • Akeson M.
        • Branton D.
        Three decades of nanopore sequencing.
        Nat Biotechnol. 2016; 34: 518-524
        • Jain M.
        • Olsen H.E.
        • Paten B.
        • et al.
        The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community.
        Genome Biol. 2016; 17: 239
        • Greninger A.L.
        • Naccache S.N.
        • Federman S.
        • et al.
        Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis.
        Genome Med. 2015; 7: 99
        • Jain M.
        • Koren S.
        • Miga K.H.
        • et al.
        Nanopore sequencing and assembly of a human genome with ultra-long reads.
        Nat Biotechnol. 2018; 36: 338-345
        • Manrao E.A.
        • Derrington I.M.
        • Laszlo A.H.
        • et al.
        Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase.
        Nat Biotechnol. 2012; 30: 349-353
        • Garaj S.
        • Liu S.
        • Golovchenko J.A.
        • et al.
        Molecule-hugging graphene nanopores.
        Proc Natl Acad Sci U S A. 2013; 110: 12192-12196
        • Milius R.P.
        • Heuer M.
        • Valiga D.
        • et al.
        Histoimmunogenetics markup language 1.0: reporting next generation sequencing-based HLA and KIR genotyping.
        Hum Immunol. 2015; 76: 963-974
        • Mack S.J.
        • Milius R.P.
        • Gifford B.D.
        • et al.
        Minimum information for reporting next generation sequence genotyping (MIRING): guidelines for reporting HLA and KIR genotyping via next generation sequencing.
        Hum Immunol. 2015; 76: 954-962
        • Hosomichi K.
        • Shiina T.
        • Tajima A.
        • et al.
        The impact of next-generation sequencing technologies on HLA research.
        J Hum Genet. 2015; 60: 665-673
        • Clark P.M.
        • Kunkel M.
        • Monos D.S.
        The dichotomy between disease phenotype databases and the implications for understanding complex diseases involving the major histocompatibility complex.
        Int J Immunogenet. 2015; 42: 413-422