Advertisement
Review Article| Volume 38, ISSUE 4, P579-593, December 2018

Technical Aspects of Crossmatching in Transplantation

Published:October 05, 2018DOI:https://doi.org/10.1016/j.cll.2018.07.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lefaucheur C.
        • Viglietti D.
        • Mangiola M.
        • et al.
        From humoral theory to performant risk stratification in kidney transplantation.
        J Immunol Res. 2017; 2017: 5201098
        • Mehra N.K.
        • Baranwal A.K.
        Clinical and immunological relevance of antibodies in solid organ transplantation.
        Int J Immunogenet. 2016; 43: 351-368
        • Valenzuela N.M.
        • Reed E.F.
        Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies.
        J Clin Invest. 2017; 127: 2492-2504
        • Bray R.A.
        Lymphocyte crossmatching by flow cytometry.
        Methods Mol Biol. 2013; 1034: 285-296
        • Bray R.A.
        • Tarsitani C.
        • Gebel H.M.
        • et al.
        Clinical cytometry and progress in HLA antibody detection.
        Methods Cell Biol. 2011; 103: 285-310
        • Downing J.
        The lymphocyte crossmatch by flow cytometry for kidney transplantation.
        Methods Mol Biol. 2012; 882: 379-390
        • Graff R.J.
        • Buchanan P.M.
        • Dzebisashvili N.
        • et al.
        The clinical importance of flow cytometry crossmatch in the context of CDC crossmatch results.
        Transplant Proc. 2010; 42: 3471-3474
        • Patel R.
        • Terasaki P.I.
        Significance of the positive crossmatch test in kidney transplantation.
        N Engl J Med. 1969; 280: 735-739
        • Stiller C.R.
        • Sinclair N.R.
        • Abrahams S.
        • et al.
        Lymphocyte-dependent antibody and renal graft rejection.
        Lancet. 1975; 1: 953-954
        • Takasugi M.
        • Sengar D.P.
        • Terasaki P.I.
        Microassays in transplantation immunology.
        Am J Med Technol. 1971; 37: 470-472
        • Tanaka N.
        • Takasugi M.
        • Terasaki P.I.
        Presensitization to transplants detected by cellular immunity tests.
        Transplantation. 1971; 12: 514-518
        • Terasaki P.I.
        • McClelland J.D.
        Microdroplet assay of human serum cytotoxins.
        Nature. 1964; 204: 998-1000
        • Amos D.B.
        • Cohen I.
        • Klein Jr., W.J.
        Mechanisms of immunologic enhancement.
        Transpl Proc. 1970; 2: 68-75
        • Fuller T.C.
        • Fuller A.A.
        • Golden M.
        • et al.
        HLA alloantibodies and the mechanism of the antiglobulin-augmented lymphocytotoxicity procedure.
        Hum Immunol. 1997; 56: 94-105
        • Kerman R.H.
        • Kimball P.M.
        • Van Buren C.T.
        • et al.
        Improved renal allograft survival for AHG and DTE/AHG crossmatch-negative recipients.
        Transpl Proc. 1991; 23: 400-402
        • Johnson A.H.
        • Rossen R.D.
        • Butler W.T.
        Detection of alloantibodies using a sensitive antiglobulin microcytotoxicity test: identification of low levels of pre-formed antibodies in accelerated allograft rejection.
        Tissue Antigens. 1972; 2: 215-226
        • Kerman R.H.
        • Kimball P.M.
        • Van Buren C.T.
        • et al.
        AHG and DTE/AHG procedure identification of crossmatch-appropriate donor-recipient pairings that result in improved graft survival.
        Transplantation. 1991; 51: 316-320
        • Kerman R.H.
        The role of crossmatching in organ transplantation.
        Arch Pathol Lab Med. 1991; 115: 255-259
        • Delgado J.C.
        • Eckels D.D.
        Positive B-cell only flow cytometric crossmatch: implications for renal transplantation.
        Exp Mol Pathol. 2008; 85: 59-63
        • Duquesnoy R.J.
        • Marrari M.
        Multilaboratory evaluation of serum analysis for HLA antibody and crossmatch reactivity by lymphocytotoxicity methods.
        Arch Pathol Lab Med. 2003; 127: 149-156
        • Cross D.E.
        • Whittier F.C.
        • Weaver P.
        • et al.
        A comparison of the antiglobulin versus extended incubation time crossmatch: results in 223 renal transplants.
        Transplant Proc. 1977; 9: 1803-1806
        • Garovoy M.R.
        • Rheinschmidt M.A.
        • Bigos M.
        • et al.
        Flow cytometry analysis: a high technology crossmatch technique facilitating transplantation.
        Transplant Proc. 1983; 15: 1939-1944
        • Bray R.A.
        Flow cytometry crossmatching for solid organ transplantation.
        Methods Cell Biol. 1994; 41: 103-119
        • Bray R.A.
        • Lebeck L.K.
        • Gebel H.M.
        The flow cytometric crossmatch. Dual-color analysis of T cell and B cell reactivities.
        Transplantation. 1989; 48: 834-840
        • Scornik J.C.
        • Bray R.A.
        • Pollack M.S.
        • et al.
        Multicenter evaluation of the flow cytometry T-cell crossmatch: results from the American Society of Histocompatibility and Immunogenetics-College of American Pathologists proficiency testing program.
        Transplantation. 1997; 63: 1440-1445
        • Lazda V.A.
        • Pollak R.
        • Mozes M.F.
        • et al.
        The relationship between flow cytometer crossmatch results and subsequent rejection episodes in cadaver renal allograft recipients.
        Transplantation. 1988; 45: 562-565
        • Mahoney R.J.
        • Ault K.A.
        • Given S.R.
        • et al.
        The flow cytometric crossmatch and early renal transplant loss.
        Transplantation. 1990; 49: 527-535
        • Talbot D.
        • Givan A.L.
        • Shenton B.K.
        • et al.
        The relevance of a more sensitive crossmatch assay to renal transplantation.
        Transplantation. 1989; 47: 552-555
        • Karpinski M.
        • Rush D.
        • Jeffery J.
        • et al.
        Flow cytometric crossmatching in primary renal transplant recipients with a negative anti-human globulin enhanced cytotoxicity crossmatch.
        J Am Soc Nephrol. 2001; 12: 2807-2814
        • Bray R.A.
        Flow cytometry in the transplant laboratory.
        Ann N Y Acad Sci. 1993; 677: 138-151
        • Bray R.A.
        Flow cytometry in human leukocyte antigen testing.
        Semin Hematol. 2001; 38: 194-200
        • Bray R.A.
        • Gebel H.M.
        • Ellis T.M.
        Flow cytometric assessment of HLA alloantibodies.
        Curr Protoc Cytom. 2004; Chapter 6 (Unit 6. 16)
        • Bearden C.M.
        • Agarwal A.
        • Book B.K.
        • et al.
        Pronase treatment facilitates alloantibody flow cytometric and cytotoxic crossmatching in the presence of rituximab.
        Hum Immunol. 2004; 65: 803-809
        • Desoutter J.
        • Apithy M.J.
        • Bartczak S.
        • et al.
        False positive B-cells crossmatch after prior rituximab exposure of the kidney donor.
        Case Rep Transplant. 2016; 2016: 4534898
        • Desoutter J.
        • Apithy M.J.
        • Guillaume N.
        Unexpected positive prospective crossmatches in organ transplant.
        Exp Clin Transplant. 2017; 15: 253-259
        • Szewczyk K.
        • Barrios K.
        • Magas D.
        • et al.
        Flow cytometry crossmatch reactivity with pronase-treated T cells induced by non-HLA autoantibodies in human immunodeficiency virus-infected patients.
        Hum Immunol. 2016; 77: 449-455
        • Apps R.
        • Meng Z.
        • Del Prete G.Q.
        • et al.
        Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells.
        J Immunol. 2015; 194: 3594-3600
        • Ciurea S.O.
        • Thall P.F.
        • Wang X.
        • et al.
        Donor-specific anti-HLA Abs and graft failure in matched unrelated donor hematopoietic stem cell transplantation.
        Blood. 2011; 118: 5957-5964
        • Pellegrino M.A.
        • Belvedere M.
        • Pellegrino A.G.
        • et al.
        B peripheral lymphocytes express more HLA antigens than T peripheral lymphocytes.
        Transplantation. 1978; 25: 93-95
        • Yarzabek B.
        • Zaitouna A.J.
        • Olson E.
        • et al.
        Variations in HLA-B cell surface expression, half-life and extracellular antigen receptivity.
        eLife. 2018; 7: e34961
        • Petersdorf E.W.
        • Gooley T.A.
        • Malkki M.
        • et al.
        HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation.
        Blood. 2014; 124: 3996-4003
        • Montagner J.
        • Tarasconi H.
        • Wurdig J.
        • et al.
        The positive virtual crossmatch. Correlation between HLA DSA and flow cytometry crossmatch results.
        Hum Immunol. 2016; 77: 6
        • Cresswell P.
        Regulation of HLA class I and class II antigen expression.
        Br Med Bull. 1987; 43: 66-80
        • Kao K.J.
        • Riley W.J.
        Genetic predetermination of quantitative expression of HLA antigens in platelets and mononuclear leukocytes.
        Hum Immunol. 1993; 38: 243-250
        • Vandiedonck C.
        • Taylor M.S.
        • Lockstone H.E.
        • et al.
        Pervasive haplotypic variation in the spliceo-transcriptome of the human major histocompatibility complex.
        Genome Res. 2011; 21: 1042-1054
        • Good D.J.
        • Zhang A.
        • Kemesky J.
        • et al.
        Previously believed to be nonsensical crossmatch results, explained by anti-HLA-C antibodies.
        Hum Immunol. 2017; 78: 75
        • Lucas D.P.
        • Vega R.M.
        • Jackson A.M.
        Variable expression of HLA-C impacts T versus B cell crossmatch outcomes.
        Hum Immunol. 2016; 77: 2
        • Badders J.L.
        • Jones J.A.
        • Jeresano M.E.
        • et al.
        Variable HLA expression on deceased donor lymphocytes: not all crossmatches are created equal.
        Hum Immunol. 2015; 76: 795-800
        • Basham T.Y.
        • Merigan T.C.
        Recombinant interferon-gamma increases HLA-DR synthesis and expression.
        J Immunol. 1983; 130: 1492-1494
        • Kuipers H.F.
        • Biesta P.J.
        • Groothuis T.A.
        • et al.
        Statins affect cell-surface expression of major histocompatibility complex class II molecules by disrupting cholesterol-containing microdomains.
        Hum Immunol. 2005; 66: 653-665
        • Le Morvan C.
        • Cogne M.
        • Troutaud D.
        • et al.
        Modification of HLA expression on peripheral lymphocytes and monocytes during aging.
        Mech Ageing Dev. 1998; 105: 209-220
        • Viallard J.F.
        • Bloch-Michel C.
        • Neau-Cransac M.
        • et al.
        HLA-DR expression on lymphocyte subsets as a marker of disease activity in patients with systemic lupus erythematosus.
        Clin Exp Immunol. 2001; 125: 485-491
        • Liwski R.S.
        • Greenshields A.L.
        • Conrad D.M.
        • et al.
        Rapid optimized flow cytometric crossmatch (FCXM) assays: the halifax and halifaster protocols.
        Hum Immunol. 2018; 79: 28-38
        • Barrios K.
        • Lunz J.
        • Labuda B.
        • et al.
        Optimized flow cytometry crossmatch with increased sensitivity and specificity.
        Am J Transplant. 2016; 16: 609
        • Lobo P.I.
        • Spencer C.E.
        • Stevenson W.C.
        • et al.
        The use of pronase-digested human leukocytes to improve specificity of the flow cytometric crossmatch.
        Transpl Int. 1995; 8: 472-480
        • Vaidya S.
        • Cooper T.Y.
        • Avandsalehi J.
        • et al.
        Improved flow cytometric detection of HLA alloantibodies using pronase: potential implications in renal transplantation.
        Transplantation. 2001; 71: 422-428
        • Hetrick S.J.
        • Schillinger K.P.
        • Zachary A.A.
        • et al.
        Impact of pronase on flow cytometric crossmatch outcome.
        Hum Immunol. 2011; 72: 330-336
        • Park H.
        • Lim Y.M.
        • Han B.Y.
        • et al.
        Frequent false-positive reactions in pronase-treated T-cell flow cytometric cross-match tests.
        Transplant Proc. 2012; 44: 87-90
        • Hardt M.
        • Baron T.
        • Groschup M.H.
        A comparative study of immunohistochemical methods for detecting abnormal prion protein with monoclonal and polyclonal antibodies.
        J Comp Pathol. 2000; 122: 43-53
        • Lipman N.S.
        • Jackson L.R.
        • Trudel L.J.
        • et al.
        Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources.
        ILAR J. 2005; 46: 258-268
        • Kerman R.H.
        • Van Buren C.T.
        • Lewis R.M.
        • et al.
        Improved graft survival for flow cytometry and antihuman globulin crossmatch-negative retransplant recipients.
        Transplantation. 1990; 49: 52-56