Advertisement
Review Article| Volume 38, ISSUE 4, P679-693, December 2018

Human Leukocyte Antigen and Disease Associations

A Broader Perspective
  • Mengkai Shieh
    Affiliations
    Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Abramson Research Center, Room 707, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
  • Nilesh Chitnis
    Affiliations
    Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Abramson Research Center, Room 707, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
  • Dimitri Monos
    Correspondence
    Corresponding author.
    Affiliations
    Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Abramson Research Center, Room 707A, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
Published:October 05, 2018DOI:https://doi.org/10.1016/j.cll.2018.07.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Clark P.M.
        • Kunkel M.
        • Monos D.S.
        The dichotomy between disease phenotype databases and the implications for understanding complex diseases involving the major histocompatibility complex.
        Int J Immunogenet. 2015; 42: 413-422
        • Farh K.K.-H.
        • Marson A.
        • Zhu J.
        • et al.
        Genetic and epigenetic fine mapping of causal autoimmune disease variants.
        Nature. 2015; 518: 337-343
        • Klitz W.
        • Hedrick P.
        • Louis E.J.
        New reservoirs of HLA alleles: pools of rare variants enhance immune defense.
        Trends Genet. 2012; 28: 480-486
        • Horton R.
        • Gibson R.
        • Coggill P.
        • et al.
        Variation analysis and gene annotation of eight MHC haplotypes: the MHC haplotype project.
        Immunogenetics. 2008; 60: 1-18
      1. UCL. MHC haplotype project. UCL cancer institute. 2017. Available at: https://www.ucl.ac.uk/cancer/research/department-cancer-biology/medical-genomics/medical-genomics-past-projects/mhc-haplotype. Accessed May 24, 2018.

        • Gabriel C.
        • Danzer M.
        • Hackl C.
        • et al.
        Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification.
        Hum Immunol. 2009; 70: 960-964
        • Lind C.
        • Ferriola D.
        • Mackiewicz K.
        • et al.
        Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing.
        Hum Immunol. 2010; 71: 1033-1042
        • Holcomb C.L.
        • Hoeglund B.
        • Anderson M.W.
        • et al.
        A multi-site study using high-resolution HLA genotyping by next generation sequencing.
        Tissue Antigens. 2011; 77: 206-217
        • Duke J.L.
        • Lind C.
        • Mackiewicz K.
        • et al.
        Determining performance characteristics of an NGS-based HLA typing method for clinical applications: Determining performance characteristics for NGS-based HLA typing.
        HLA. 2016; 87: 141-152
        • Gandhi M.J.
        • Ferriola D.
        • Huang Y.
        • et al.
        Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory: metrics of relevance and considerations for its successful implementation.
        Arch Pathol Lab Med. 2017; 141: 806-812
        • Maretty L.
        • Jensen J.M.
        • Petersen B.
        • et al.
        Sequencing and de novo assembly of 150 genomes from Denmark as a population reference.
        Nature. 2017; 548: 87-91
        • Jain M.
        • Koren S.
        • Miga K.H.
        • et al.
        Nanopore sequencing and assembly of a human genome with ultra-long reads.
        Nat Biotechnol. 2018; 36: 338-345
        • Norman P.J.
        • Norberg S.J.
        • Guethlein L.A.
        • et al.
        Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II.
        Genome Res. 2017; 27: 813-823
        • Dapprich J.
        • Ferriola D.
        • Mackiewicz K.
        • et al.
        The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity.
        BMC Genomics. 2016; 17: 486
        • Chitnis N.
        • Clark P.M.
        • Kamoun M.
        • et al.
        An expanded role for HLA genes: HLA-B encodes a microRNA that regulates IgA and other immune response transcripts.
        Front Immunol. 2017; 8: 583
        • Clark P.M.
        • Chitnis N.
        • Shieh M.
        • et al.
        Novel and haplotype specific micrornas encoded by the major histocompatibility complex.
        Sci Rep. 2018; 8: 3832
        • Kulkarni S.
        • Savan R.
        • Qi Y.
        • et al.
        Differential microRNA regulation of HLA-C expression and its association with HIV control.
        Nature. 2011; 472: 495-498
        • Kulkarni S.
        • Qi Y.
        • O’hUigin C.
        • et al.
        Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease.
        Proc Natl Acad Sci. 2013; 110: 20705-20710
        • Naranbhai V.
        • Carrington M.
        Host genetic variation and HIV disease: from mapping to mechanism.
        Immunogenetics. 2017; 69: 489-498
        • Manaster I.
        • Goldman-Wohl D.
        • Greenfield C.
        • et al.
        MiRNA-mediated control of HLA-G expression and function. Bobé P, ed.
        PLoS One. 2012; 7: e33395
        • Mori A.
        • Nishi H.
        • Sasaki T.
        • et al.
        HLA-G expression is regulated by miR-365 in trophoblasts under hypoxic conditions.
        Placenta. 2016; 45: 37-41
        • Wang X.
        • Li B.
        • Wang J.
        • et al.
        Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression.
        Reprod Biomed Online. 2012; 25: 415-424
        • Tan Z.
        • Randall G.
        • Fan J.
        • et al.
        Allele-specific targeting of microRNAs to HLA-G and risk of asthma.
        Am J Hum Genet. 2007; 81: 829-834
        • Chen Q.
        • Luo G.
        • Zhang X.
        MiR-148a modulates HLA-G expression and influences tumor apoptosis in esophageal squamous cell carcinoma.
        Exp Ther Med. 2017; 14: 4448-4452
        • Sun J.
        • Chu H.
        • Ji J.
        • et al.
        Long non-coding RNA HOTAIR modulates HLA-G expression by absorbing miR-148a in human cervical cancer.
        Int J Oncol. 2016; 49: 943-952
        • Jasinski-Bergner S.
        • Reches A.
        • Stoehr C.
        • et al.
        Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma.
        Oncotarget. 2016; 7: 26866-26878
        • Guan Z.
        • Song B.
        • Liu F.
        • et al.
        TGF-β induces HLA-G expression through inhibiting miR-152 in gastric cancer cells.
        J Biomed Sci. 2015; 22: 107
        • Bian X.
        • Si Y.
        • Zhang M.
        • et al.
        Down-expression of miR-152 lead to impaired anti-tumor effect of NK via upregulation of HLA-G.
        Tumor Biol. 2016; 37: 3749-3756
        • Song B.
        • Guan Z.
        • Liu F.
        • et al.
        Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells.
        Biochem Biophys Res Commun. 2015; 464: 807-813
        • Jasinski-Bergner S.
        • Stoehr C.
        • Bukur J.
        • et al.
        Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma.
        OncoImmunology. 2015; 4: e1008805
        • Gao F.
        • Zhao Z.-L.
        • Zhao W.-T.
        • et al.
        miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells.
        Biochem Biophys Res Commun. 2013; 431: 610-616
        • Hughes T.
        • Adler A.
        • Kelly J.A.
        • et al.
        Evidence for gene-gene epistatic interactions among susceptibility loci for systemic lupus erythematosus.
        Arthritis Rheum. 2012; 64: 485-492
        • Kirino Y.
        • Bertsias G.
        • Ishigatsubo Y.
        • et al.
        Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1.
        Nat Genet. 2013; 45: 202-207
        • Cortes A.
        • Pulit S.L.
        • Leo P.J.
        • et al.
        Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1.
        Nat Commun. 2015; 6: 7146
        • Lester S.
        • McLure C.
        • Williamson J.
        • et al.
        Epistasis between the MHC and the RCA block in primary Sjogren syndrome.
        Ann Rheum Dis. 2008; 67: 849-854
        • Lester S.
        • Stokes L.
        • Skarratt K.K.
        • et al.
        Epistasis with HLA DR3 implicates the P2X7 receptor in the pathogenesis of primary Sjögren’s syndrome.
        Arthritis Res Ther. 2013; 15: R71
        • Castro-Santos P.
        • Moro-García M.A.
        • Marcos-Fernández R.
        • et al.
        ERAP1 and HLA-C interaction in inflammatory bowel disease in the Spanish population.
        Innate Immun. 2017; 23: 476-481
        • Moreno M.
        • Silva E.L.
        • Ramirez L.E.
        • et al.
        Chagas’ disease susceptibility/resistance: linkage disequilibrium analysis suggests epistasis between major histocompatibility complex and interleukin-10.
        Tissue Antigens. 2004; 64: 18-24
        • Zheng H.-F.
        • Zuo X.-B.
        • Lu W.-S.
        • et al.
        Variants in MHC, LCE and IL12B have epistatic effects on psoriasis risk in Chinese population.
        J Dermatol Sci. 2011; 61: 124-128
        • Harton J.
        • Jin L.
        • Hahn A.
        • et al.
        Immunological functions of the membrane proximal region of MHC class II molecules.
        F1000Research. 2016; 5: 368
        • Barroso M.
        • Tucker H.
        • Drake L.
        • et al.
        Antigen-B cell receptor complexes associate with intracellular major histocompatibility complex (MHC) class II molecules.
        J Biol Chem. 2015; 290: 27101-27112
        • Lang P.
        • Stolpa J.C.
        • Freiberg B.A.
        • et al.
        TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-alpha/beta dimers.
        Science. 2001; 291: 1537-1540
        • Jin L.
        • Waterman P.M.
        • Jonscher K.R.
        • et al.
        MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals.
        Mol Cell Biol. 2008; 28: 5014-5026
        • Babushok D.V.
        • Duke J.L.
        • Xie H.M.
        • et al.
        Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications.
        Blood Adv. 2017; 1: 1900-1910
        • McGranahan N.
        • Rosenthal R.
        • Hiley C.T.
        • et al.
        Allele-specific HLA loss and immune escape in lung cancer evolution.
        Cell. 2017; 171: 1259-1271.e11
        • Hiraki A.
        • Fuj II, N.
        • Murakami T.
        • et al.
        High frequency of allele-specific down-regulation of HLA class I expression in lung cancer cell lines.
        Anticancer Res. 2004; 24: 1525-1528
        • Nie Y.
        DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas.
        Carcinogenesis. 2001; 22: 1615-1623
        • Brea E.J.
        • Oh C.Y.
        • Manchado E.
        • et al.
        Kinase regulation of human MHC class I molecule expression on cancer cells.
        Cancer Immunol Res. 2016; 4: 936-947
        • Chang C.-C.
        • Pirozzi G.
        • Wen S.-H.
        • et al.
        Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy.
        J Biol Chem. 2015; 290: 26562-26575
        • Mehta A.M.
        • Jordanova E.S.
        • Kenter G.G.
        • et al.
        Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma.
        Cancer Immunol Immunother. 2007; 57: 197-206
        • Bandoh N.
        • Ogino T.
        • Katayama A.
        • et al.
        HLA class I antigen and transporter associated with antigen processing downregulation in metastatic lesions of head and neck squamous cell carcinoma as a marker of poor prognosis.
        Oncol Rep. 2010; 23: 933-939
        • Kamata Y.
        • Kuhara A.
        • Iwamoto T.
        • et al.
        Identification of HLA class I-binding peptides derived from unique cancer-associated proteins by mass spectrometric analysis.
        Anticancer Res. 2013; 33: 1853-1859
        • Nelde A.
        • Schuster H.
        • Kowalewski D.J.
        • et al.
        Identification of naturally presented HLA ligands of enriched leukemic progenitor cells for peptide-based immunotherapy in Acute Myeloid Leukemia (AML).
        Blood. 2016; 128: 4046
        • Berlin C.
        • Kowalewski D.J.
        • Schuster H.
        • et al.
        Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.
        Leukemia. 2015; 29: 647-659
        • Neidert M.C.
        • Kowalewski D.J.
        • Silginer M.
        • et al.
        The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy.
        Acta Neuropathol. 2018; 135: 923-938
        • Neumann A.
        • Hörzer H.
        • Hillen N.
        • et al.
        Identification of HLA ligands and T-cell epitopes for immunotherapy of lung cancer.
        Cancer Immunol Immunother. 2013; 62: 1485-1497
        • Suda T.
        • Tsunoda T.
        • Daigo Y.
        • et al.
        Identification of human leukocyte antigen-A24-restricted epitope peptides derived from gene products upregulated in lung and esophageal cancers as novel targets for immunotherapy.
        Cancer Sci. 2007; 98: 1803-1808
        • Kowalewski D.J.
        • Schemionek M.
        • Kanz L.
        • et al.
        HLA ligandome analysis of Chronic Myeloid Leukemia (CML), revealed novel tumor associated antigens for peptide based immunotherapy. Stickel JS, ed.
        Blood. 2013; 122: 3975
        • Peper J.K.
        • Bösmüller H.-C.
        • Schuster H.
        • et al.
        HLA ligandomics identifies histone deacetylase 1 as target for ovarian cancer immunotherapy.
        OncoImmunology. 2016; 5: e1065369
        • Schuster H.
        • Peper J.K.
        • Bösmüller H.-C.
        • et al.
        The immunopeptidomic landscape of ovarian carcinomas.
        Proc Natl Acad Sci. 2017; 114: E9942-E9951
        • Marty R.
        • Kaabinejadian S.
        • Rossell D.
        • et al.
        MHC-I genotype restricts the oncogenic mutational landscape.
        Cell. 2017; 171: 1272-1283.e15
        • Chowell D.
        • Morris L.G.T.
        • Grigg C.M.
        • et al.
        Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy.
        Science. 2018; 359: 582-587
        • Kellis M.
        • Wold B.
        • Snyder M.P.
        • et al.
        Defining functional DNA elements in the human genome.
        Proc Natl Acad Sci. 2014; 111: 6131-6138
        • Casdagli M.
        Nonlinear prediction of chaotic time series.
        Physica D Nonlinear Phenomena. 1989; 35: 335-356
        • Grassberger P.
        • Schreiber T.
        • Schaffrath C.
        Nonlinear time sequence analysis.
        Int J Bifurcat Chaos. 1991; 1: 521-547
        • Provenzale A.
        • Smith L.A.
        • Vio R.
        • et al.
        Distinguishing between low-dimensional dynamics and randomness in measured time series.
        Physica D: Nonlinear Phenomena. 1992; 58: 31-49
        • Tsallis C.
        Dynamical scenario for nonextensive statistical mechanics.
        Physica A: Statistical Mechanics and its Applications. 2004; 340: 1-10
        • Karakatsanis L.P.
        • Pavlos G.P.
        • Iliopoulos A.C.
        • et al.
        Assessing information content and interactive relationships of subgenomic DNA sequences of the MHC using complexity theory approaches based on the non-extensive statistical mechanics.
        Physica A: Statistical Mechanics and its Applications. 2018; 505: 77-93
        • Floyd R.A.
        Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development.
        Free Radic Biol Med. 1999; 26: 1346-1355
        • Klegeris A.
        • McGeer E.G.
        • McGeer P.L.
        Therapeutic approaches to inflammation in neurodegenerative disease.
        Curr Opin Neurol. 2007; 20: 351-357
        • Yokoyama J.S.
        • Wang Y.
        • Schork A.J.
        • et al.
        Association between genetic traits for immune-mediated diseases and alzheimer disease.
        JAMA Neurol. 2016; 73: 691
        • Jones L.
        • Holmans P.A.
        • Hamshere M.L.
        • et al.
        Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of alzheimer’s disease. El Khoury J, ed.
        PLoS One. 2010; 5: e13950