Advertisement
Review Article| Volume 38, ISSUE 3, P539-551, September 2018

Special Considerations for Liquid Chromatography–Tandem Mass Spectrometry Method Development

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leinenbach A.
        • Pannee J.
        • Dülffer T.
        • et al.
        Mass spectrometry–based candidate reference measurement procedure for quantification of amyloid-β in cerebrospinal fluid.
        Clin Chem. 2014; 60: 987-994
        • Fanelli D.
        Negative results are disappearing from most disciplines and countries.
        Scientometrics. 2012; 90: 891-904
        • Kushnir M.M.
        • Rockwood A.L.
        • Nelson G.J.
        • et al.
        Assessing analytical specificity in quantitative analysis using tandem mass spectrometry.
        Clin Biochem. 2005; 38: 319-327
        • Rappold B.A.
        Mass spectrometry selectivity, specifically.
        Clin Chem. 2016; 62: 54-156
        • Kebarle P.
        • Peschke M.
        On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions.
        Anal Chim Acta. 2000; 406: 11-35
        • Hewavitharana A.K.
        • Herath H.M.D.R.
        • Shaw P.N.
        • et al.
        Effect of solvent and electrospray mass spectrometer parameters on the charge state distribution of peptides–a case study using liquid chromatography/mass spectrometry method development for beta-endorphin assay.
        Rapid Commun Mass Spectrom. 2010; 24: 3510-3514
        • Cole R.B.
        Some tenets pertaining to electrospray ionization mass spectrometry.
        J Mass Spectrom. 2000; 35: 763-772
        • Kiontke A.
        • Oliveira-Birkmeier A.
        • Opitz A.
        • et al.
        Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration.
        PLoS One. 2016; 11: e0167502
        • Page J.S.
        • Kelly R.T.
        • Tang K.
        • et al.
        Ionization and transmission efficiency in an electrospray ionization–mass spectrometry interface.
        J Am Soc Mass Spectrom. 2007; 18: 1582-1590
        • Grant R.
        • Rappold B.R.
        Development and validation of small molecule analytes by liquid chromatography-tandem mass spectrometry.
        in: Rifai N. Horvath A.R. Wittwer C. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis MO Elsevier, 2018: 326
        • Annesley T.M.
        Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry.
        Clin Chem. 2007; 53: 1827-1834
      1. Lickteig A, Salske M, Rappold BA. Design of optimization: how to improve performance of high-volume clinical LC/MS/MS assays; Proceedings of the 63rd ASMS Conference on Mass Spectrometry and Allied Topics, St Louis MO, May 31-June 4, 2015. [abstract: MP326].

        • Napoli K.L.
        More on methanol-associated matrix effects in electrospray ionization mass spectrometry.
        Clin Chem. 2009; 55: 1250-1252
        • Bristow A.W.
        • Nichols W.F.
        • Webb K.S.
        • et al.
        Evaluation of protocols for reproducible electrospray in-source collisionally induced dissociation on various liquid chromatography/mass spectrometry instruments and the development of spectral libraries.
        Rapid Commun Mass Spectrom. 2002; 16: 2374-2386
        • Little J.L.
        • Williams A.J.
        • Pshenichnov A.
        • et al.
        Identification of known unknowns utilizing accurate mass data and ChemSpider.
        J Am Soc Mass Spectrom. 2012; 23: 179-185
      2. Bennett PK, Van Horne KC. Identification of the major endogenous and persistent compounds in plasma, serum, and tissue that cause matrix effects with electrospray LC/MS techniques. American Association of Pharmaceutical Scientists Conference, Salt Lake City, Utah, Oct 24-25 2003.

        • Little J.L.
        • Wempe M.F.
        • Buchanan C.M.
        Liquid chromatography–mass spectrometry/mass spectrometry method development for drug metabolism studies: examining lipid matrix ionization effects in plasma.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 833: 219-230
        • Rappold B.A.
        • Grant R.P.
        HILIC-MS/MS method development for targeted quantitation of metabolites: practical considerations from a clinical diagnostic perspective.
        J Sep Sci. 2011; 34: 3527-3537
        • Hammerling J.A.
        A review of medical errors in laboratory diagnostics and where we are today.
        Lab Med. 2015; 43: 41-44
        • Wallace A.M.
        • Gibson S.I.
        • De La Hunty A.
        • et al.
        Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations.
        Steroids. 2010; 75: 477-488
        • Stout P.R.
        • Horn C.K.
        • Lesser D.R.
        Loss of THCCOOH from urine specimens stored in polypropylene and polyethylene containers at different temperatures.
        J Anal Toxicol. 2000; 247: 567-571
      3. Grant R, Rappold B. Development and validation of quantitative LC-MS/MS assays for use in clinical diagnostics, mass spectrometry applications to the clinical laboratory Conference, Renaissance Hotel & Palm Springs Convention Center, Palm Springs CA, 2015, 2016, 2017, short course.

      4. Zhang L, Henion J. LC/MS/MS bioanalytical protocol for determining the degree of non-specific binding in multi-well plates, Proceedings of the 65th/ASMS Conference on Mass Spectrometry and Allied Topics, Indianopolis, IN, June 4–8, 2017.

        • Wells D.
        Sample preparation for mass spectrometry applications.
        in: Rifai N. Horvath A.R. Wittwer C. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis MO Elsevier, 2018: 324
        • Chambers E.
        • Wagrowski-Diehl D.M.
        • Lu Z.
        • et al.
        Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 852: 22-34
        • Polson C.
        • Sarkar P.
        • Incledon B.
        • et al.
        Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2003; 785: 263-275
        • Marney L.C.
        • Laha T.J.
        • Baird G.S.
        • et al.
        Isopropanol protein precipitation for the analysis of plasma free metanephrines by liquid chromatography–tandem mass spectrometry.
        Clin Chem. 2008; 54: 1729-1732
        • Grant R.P.
        Design and utility of open-access liquid chromatography tandem mass spectrometry in quantitative clinical toxicology and therapeutic drug monitoring.
        Trends Analyt Chem. 2016; 84: 51-60
        • Taylor P.J.
        Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry.
        Clin Biochem. 2005; 38: 328-334
        • Bonfiglio R.
        • King R.C.
        • Olah T.V.
        • et al.
        The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds.
        Rapid Commun Mass Spectrom. 1999; 30: 1175-1185
        • Dams R.
        • Huestis M.A.
        • Lambert W.E.
        • et al.
        Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid.
        J Am Soc Mass Spectrom. 2003; 14: 1290-1294
        • Santa T.
        Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.
        Biomed Chromatogr. 2011; 25: 1-10
        • Iwasaki Y.
        • Nakano Y.
        • Mochizuki K.
        • et al.
        A new strategy for ionization enhancement by derivatization for mass spectrometry.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2011; 879: 1159-1165
        • Held P.K.
        • White L.
        • Pasquali M.
        Quantitative urine amino acid analysis using liquid chromatography tandem mass spectrometry and aTRAQ® reagents.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2011; 879: 2695-2703
        • Van Eeckhaut A.
        • Lanckmans K.
        • Sarre S.
        • et al.
        Validation of bioanalytical LC–MS/MS assays: evaluation of matrix effects.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 877: 2198-2207
        • Chavez-Eng C.M.
        • Constanzer M.L.
        • Matuszewski B.K.
        High-performance liquid chromatographic-tandem mass spectrometric evaluation and determination of stable isotope labeled analogues of rofecoxib in human plasma samples from oral bioavailability studies.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2002; 767: 117-129
        • Shuford C.M.
        • Sederoff R.R.
        • Chiang V.L.
        • et al.
        Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).
        Mol Cell Proteomics. 2012; 11: 814-823
        • Jemal M.
        • Schuster A.
        • Whigan D.B.
        Liquid chromatography/tandem mass spectrometry methods for quantitation of mevalonic acid in human plasma and urine: method validation, demonstration of using a surrogate analyte, and demonstration of unacceptable matrix effect in spite of use of a stable isotope analog internal standard.
        Rapid Commun Mass Spectrom. 2003; 17: 1723-1734
        • Wang S.
        • Cyronak M.
        • Yang E.
        Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma.
        J Pharm Biomed Anal. 2007; 43: 701-707
        • Sancho J.V.
        • Pozo O.J.
        • López F.J.
        • et al.
        Different quantitation approaches for xenobiotics in human urine samples by liquid chromatography/electrospray tandem mass spectrometry.
        Rapid Commun Mass Spectrom. 2002; 16: 639-645
        • Hewavitharana A.K.
        Matrix matching in liquid chromatography–mass spectrometry with stable isotope labelled internal standards—is it necessary?.
        J Chrom A. 2011; 1218: 359-361
        • Cao Z.
        • West C.
        • Norton-Wenzel C.S.
        • et al.
        Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum.
        Endocr Res. 2009; 34: 101-108
        • Dang Z.C.
        • Lowik C.W.G.M.
        Removal of serum factors by charcoal treatment promotes adipogenesis via a MAPK-dependent pathway.
        Mol Cell Biochem. 2005; 268: 159-167
        • Sikora M.J.
        • Johnson M.D.
        • Lee A.V.
        • et al.
        Endocrine response phenotypes are altered by charcoal-stripped serum variability.
        Endocrinology. 2016; 157: 3760-3766
        • Strathmann F.G.
        • Laha T.J.
        • Hoofnagle A.N.
        Quantification of 1α, 25-dihydroxy vitamin D by immunoextraction and liquid chromatography–tandem mass spectrometry.
        Clin Chem. 2011; 57: 1279-1285
        • Minkler P.E.
        • Stoll M.S.
        • Ingalls S.T.
        • et al.
        Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization–mass spectrometry.
        Clin Chem. 2008; 54: 1451-1462
        • Clinical and Laboratory Standards Institute
        Interference testing in clinical chemistry; approved guideline—second edition. CLSI document EP7–A2.
        Clinical and Laboratory Standards Institute, Wayne (PA)2005
      5. Duewer DL, Parris RM, White E, et al. An approach to the metrologically sound traceable assessment of the chemical purity of organic reference materials. No. Special Publication (NIST SP)-1012. National Institute of Standards and Technology, Gaithersburg (MD): 2004.

        • Singh R.J.
        • Grebe S.K.
        • Yue B.
        • et al.
        Precisely wrong? Urinary fractionated metanephrines and peer-based laboratory proficiency testing.
        Clin Chem. 2005; 51: 472-474
      6. IFCC reference materials list. Available at: http://www.ifcc.org/ifcc-scientific-division/reference-materials/. Accessed January 10, 2018.

        • CLSI
        Liquid chromatography-mass spectrometry methods; approved guideline. CLSI document C62-A.
        Clinical and Laboratory Standards Institute, Wayne (PA)2014