Advertisement
Review Article| Volume 38, ISSUE 3, P487-497, September 2018

Proteoform Analysis to Fulfill Unmet Clinical Needs and Reach Global Standardization of Protein Measurands in Clinical Chemistry Proteomics

  • Yuri E.M. van der Burgt
    Correspondence
    Corresponding author. Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), PO Box 9600, Leiden 2300 RC, The Netherlands.
    Affiliations
    Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), PO Box 9600, Leiden 2300 RC, The Netherlands

    Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, Leiden 2300 RC, The Netherlands
    Search for articles by this author
  • Christa M. Cobbaert
    Affiliations
    Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center (LUMC), PO Box 9600, Leiden 2300 RC, The Netherlands
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aebersold R.
        • Mann M.
        Mass-spectrometric exploration of proteome structure and function.
        Nature. 2016; 537: 347-355
        • Altelaar A.F.M.
        • Munoz J.
        • Heck A.J.R.
        Next-generation proteomics: towards an integrative view of proteome dynamics.
        Nat Rev Genet. 2013; 14: 35-48
        • Hughes C.S.
        • Foehr S.
        • Garfield D.A.
        • et al.
        Ultrasensitive proteome analysis using paramagnetic bead technology.
        Mol Syst Biol. 2014; 10: 757
        • Anderson L.
        Within sight of a rational pipeline for development of protein diagnostics.
        Clin Chem. 2012; 58: 28-30
        • Monaghan P.J.
        • Lord S.J.
        • St John A.
        • et al.
        • Test Evaluation Working Group of the European Federation of Clinical Chemistry and Laboratory Medicine
        Biomarker development targeting unmet clinical needs.
        Clin Chim Acta. 2016; 460: 211-219
        • Hoofnagle A.N.
        • Wener M.H.
        The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry.
        J Immunol Methods. 2009; 347: 3-11
        • Horvath A.R.
        • Lord S.J.
        • St John A.
        • et al.
        • Test Evaluation Working Group of the European Federation of Clinical Chemistry Laboratory Medicine
        From biomarkers to medical tests: the changing landscape of test evaluation.
        Clin Chim Acta. 2014; 427: 49-57
        • Geyer P.E.
        • Kulak N.A.
        • Pichler G.
        • et al.
        Plasma proteome profiling to assess human health and disease.
        Cell Syst. 2016; 2: 185-195
        • Smith L.M.
        • Kelleher N.L.
        Consortium for top down proteomics: proteoform: a single term describing protein complexity.
        Nat Methods. 2013; 10: 186-187
        • Savaryn J.P.
        • Catherman A.D.
        • Thomas P.M.
        • et al.
        The emergence of top-down proteomics in clinical research.
        Genome Med. 2013; 5: 53
        • Kelleher N.
        A cell-based approach to the human proteome project.
        J Am Soc Mass Spectrom. 2012; 23: 1617-1624
        • Nilsson T.
        • Mann M.
        • Aebersold R.
        • et al.
        Mass spectrometry in high-throughput proteomics: ready for the big time.
        Nat Methods. 2010; 7: 681-685
        • Mann M.
        • Kelleher N.L.
        Precision proteomics: the case for high resolution and high mass accuracy.
        Proc Natl Acad Sci U S A. 2008; 105: 18132-18138
        • Dai B.
        • Rasmussen T.P.
        Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells.
        Stem Cells. 2007; 25: 2567-2574
        • Young N.L.
        • DiMaggio P.A.
        • Plazas-Mayorca M.D.
        • et al.
        High throughput characterization of combinatorial histone codes.
        Mol Cell Proteomics. 2009; 8: 2266-2284
        • The UniProt Consortium
        Reorganizing the protein space at the universal protein resource (UniProt).
        Nucleic Acids Res. 2012; 40: D71-D75
        • Kelleher N.L.
        • Thomas P.M.
        • Ntai I.
        • et al.
        Deep and quantitative top-down proteomics in clinical and translational research.
        Expert Rev Proteomics. 2014; 11: 649-651
        • Aebersold R.
        • Agar J.N.
        • Amster I.J.
        • et al.
        How many human proteoforms are there?.
        Nat Chem Biol. 2018; 14: 206-214
        • Khan Z.
        • Ford M.J.
        • Cusanovich D.A.
        • et al.
        Primate transcript and protein expression levels evolve under compensatory selection pressures.
        Science. 2013; 342: 1100-1104
      1. JCGM200. International vocabulary of metrology – Basic and general concepts and associated terms. 2012. Available at: http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf. Accessed at April 20, 2018.

        • Smit N.
        • Van Den Broek I.
        • Romijn F.P.
        • et al.
        Quality requirements for quantitative clinical chemistry proteomics.
        Translational Proteomics. 2014; 2: 1-13
        • Preissner C.M.
        • O'Kane D.J.
        • Singh R.J.
        • et al.
        Phantoms in the assay tube: heterophile antibody interferences in serum thyroglobulin assays.
        J Clin Endocrinol Metab. 2003; 88: 3069-3074
        • Carr S.A.
        • Abbatiello S.E.
        • Ackermann B.L.
        • et al.
        Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach.
        Mol Cell Proteomics. 2014; 13: 907-917
        • Annesley T.M.
        • Cooks R.G.
        • Herold D.A.
        • et al.
        Clinical mass spectrometry-achieving prominence in laboratory medicine.
        Clin Chem. 2016; 62: 1-3
        • Netzel B.C.
        • Grant R.P.
        • Hoofnagle A.N.
        • et al.
        First steps toward harmonization of LC-MS/MS thyroglobulin assays.
        Clin Chem. 2016; 62: 297-299
        • Lehmann S.
        • Poinot P.
        • Tiers L.
        • et al.
        From “Clinical Proteomics” to “Clinical Chemistry Proteomics”: considerations using quantitative mass-spectrometry as a model approach.
        Clin Chem Lab Med. 2012; 50: 235-242
        • Lehmann S.
        • Brede C.
        • Lescuyer P.
        • et al.
        Clinical mass spectrometry proteomics (cMSP) for medical laboratory: what does the future hold?.
        Clin Chim Acta. 2016; : 30246-30247
        • Sandberg S.
        • Fraser C.G.
        • Horvath A.R.
        • et al.
        Defining analytical performance specifications: consensus statement from the 1st strategic conference of the European federation of clinical chemistry and laboratory medicine.
        Clin Chem Lab Med. 2015; 53: 833-835
        • Dittrich J.
        • Adam M.
        • Maas H.
        • et al.
        Targeted on-line SPE-LC-MS/MS assay for the quantitation of 12 apolipoproteins from human blood.
        Proteomics. 2018; 18https://doi.org/10.1002/pmic.201700279
        • Merlini G.
        • Blirup-Jensen S.
        • Johnson A.M.
        • et al.
        • IFCC Committee on Plasma Proteins (C-PP)
        Standardizing plasma protein measurements worldwide: a challenging enterprise.
        Clin Chem Lab Med. 2010; 48: 1567-1575
        • Chen B.
        • Brown K.A.
        • Lin Z.
        • et al.
        Top-down proteomics: ready for prime time?.
        Anal Chem. 2018; 90: 110-127
        • Kelleher N.L.
        • Lin H.Y.
        • Valaskovic G.A.
        • et al.
        Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry.
        J Am Soc Mass Spectrom. 1999; 121: 806-812
        • Bogdanov B.
        • Smith R.D.
        Proteomics by FTICR mass spectrometry: top down and bottom up.
        Mass Spectrom Rev. 2005; 24: 168-200
        • Bladergroen M.R.
        • Derks R.J.
        • Nicolardi S.
        • et al.
        Standardized and automated solid-phase extraction procedures for high-throughput proteomics of body fluids.
        J Proteomics. 2012; 77: 144-153
        • Dell A.
        • Morris H.R.
        Glycoprotein structure determination by mass spectrometry.
        Science. 2001; 291: 2351-2356
        • Van Den Broek I.
        • Nouta J.
        • Razavi M.
        • et al.
        Quantification of serum apolipoproteins A-I and B-100 in clinical samples using an automated SISCAPA-MALDI-TOF-MS workflow.
        Methods. 2015; 81: 74-85
        • Van Den Broek I.
        • Romijn F.P.
        • Nouta J.
        • et al.
        Automated multiplex LCMS/MS assay for quantifying serum apolipoproteins A-I, B, C-I, C-II, C-III, and E with qualitative apolipoprotein E phenotyping.
        Clin Chem. 2016; 62: 188-197
        • Röst H.L.
        • Malmström L.
        • Aebersold R.
        Reproducible quantitative proteotype data matrices for systems biology.
        Mol Biol Cell. 2015; 26: 3926-3931
        • Nicolardi S.
        • Bladergroen M.R.
        • Deelder A.M.
        • et al.
        SPE-MALDI profiling of serum peptides and proteins by ultrahigh resolution FTICR-MS.
        Chromatographia. 2014; https://doi.org/10.1007/s10337-014-2812-8
        • Trenchevska O.
        • Nelson R.W.
        • Nedelkov D.
        Mass spectrometric immunoassays for discovery, screening and quantification of clinically relevant proteoforms.
        Bioanalysis. 2016; 8: 1623-1633
        • Nedelkov D.
        Human proteoforms as new targets for clinical mass spectrometry protein tests.
        Expert Rev Proteomics. 2017; 14: 691-699
        • van Scherpenzeel M.
        • Steenbergen G.
        • Morava E.
        • et al.
        High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation.
        Transl Res. 2015; 166: 639-649
        • Marklova E.
        • Albahri Z.
        Screening and diagnosis of congenital disorders of glycosylation.
        Clin Chim Acta. 2007; 385: 6-20
        • Hoshi K.
        • Matsumoto Y.
        • Ito H.
        • et al.
        A unique glycan-isoform of transferrin in cerebrospinal fluid: a potential diagnostic marker for neurological diseases.
        Biochim Biophys Acta. 2017; 1861: 2473-2478
        • Allen J.
        • Litten R.
        • Anton R.
        • et al.
        Carbohydrate-deficient transferrin as a measure of immoderate drinking: remaining issues.
        Alcohol Clin Exp Res. 1994; 18: 799-812
        • Sillanaukee P.
        • Olsson U.
        Improved diagnostic classification of alcohol abusers by combining carbohydrate-deficient transferrin and gamma-glutamyltransferase.
        Clin Chem. 2001; 47: 681-685
        • van den Boogert M.A.W.
        • Rader D.J.
        • Holleboom A.G.
        New insights into the role of glycosylation in lipoprotein metabolism.
        Curr Opin Lipidol. 2017; 28: 502-506
        • Yen-Nicolaÿ S.
        • Boursier C.
        • Rio M.
        • et al.
        MALDI-TOF MS applied to apoC-III glycoforms of patients with congenital disorders affecting O-glycosylation. Comparison with two-dimensional electrophoresis.
        Proteomics Clin Appl. 2015; 9: 787-793
        • Hermans M.P.J.
        • Bodde M.C.
        • Jukema J.W.
        • et al.
        Low levels of apolipoprotein-CII in normotriglyceridemic patients with very premature coronary artery disease: observations from the MISSION! intervention study.
        J Clin Lipidol. 2017; 11: 1407-1414
        • Ruhaak L.R.
        • Smit N.P.M.
        • Romijn F.P.H.T.M.
        • et al.
        Robust and accurate 2-year performance of a quantitative mass spectrometry-based apolipoprotein test in a clinical chemistry laboratory.
        Clin Chem. 2018; 64: 747-749
        • Nicolardi S.
        • van der Burgt Y.E.
        • Dragan I.
        • et al.
        Identification of new apolipoprotein-CIII glycoforms with ultrahigh resolution MALDI-FTICR mass spectrometry of human sera.
        J Proteome Res. 2013; 12: 2260-2268
        • Koska J.
        • Yassine H.
        • Trenchevska O.
        • et al.
        Disialylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes.
        J Lipid Res. 2016; 57: 894-905
        • Trenchevska O.
        • Schaab M.R.
        • Nelson R.W.
        • et al.
        Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms.
        Methods. 2015; 81: 86-92
        • Wolf A.M.
        • Wender R.C.
        • Etzioni R.B.
        • et al.
        • American Cancer Society Prostate Cancer Advisory Committee
        American Cancer Society guideline for the early detection of prostate cancer: update 2010.
        CA Cancer J Clin. 2010; 60: 70-98
        • Mottet N.
        • Bellmunt J.
        • Bolla M.
        • et al.
        EAU-ESTRO-SIOG guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent.
        Eur Urol. 2017; 71: 618-629
        • Kammeijer G.S.M.
        • Nouta J.
        • de la Rosette J.
        • et al.
        An in-depth glycosylation assay for urinary prostate specific antigen.
        Anal Chem. 2018; https://doi.org/10.1021/acs.analchem.7b04281
        • Wright I.
        • Van Eyk J.E.
        A roadmap to successful clinical proteomics.
        Clin Chem. 2017; 63: 245-247