Advertisement
Research Article| Volume 14, ISSUE 2, P221-238, June 1994

HIV-Induced T-Lymphocyte Depletion

  • Elaine Schattner
    Correspondence
    Address reprint requests to Elaine Schattner, MD, Division of Hematology-Oncology Room C-606, The New York Hospital-Cornell Medical Center, 525 East 68th Street, New York, NY 10021.
    Affiliations
    From the Laboratory for AIDS Virus Research, Division of Hematology-Oncology, Department of Medicine, The New York Hospital-Cornell Medical Center, New York, New York
    Search for articles by this author
  • Jeffrey Laurence
    Affiliations
    From the Laboratory for AIDS Virus Research, Division of Hematology-Oncology, Department of Medicine, The New York Hospital-Cornell Medical Center, New York, New York
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.
      A fundamental paradox of HIV disease is the progressive diminution in CD4+ lymphocytes despite the fact that only a small fraction of cells are infected. The mechanisms of T-cell depletion in HIV disease are divers. These include immune and autoimmune destruction of infected and uninfected cells, signaling derangements inducing clonal anergy and apoptosis, and direct cytotoxic effects of viral particles. These phenomena are reviewed as they pertain to the different clinical stages of HIV infection.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ardman B.
        • Sikorski M.A.
        • Settles M.
        • et al.
        Human immunodeficiency virus type 1-infected individuals make autoantibodies that bind to CD43 on normal thymic lymphocytes.
        J Exp Med. 1990; 172: 1151-1158
        • Arthur L.O.
        • Bess Jr, J.W.
        • Sowder II, R.C.
        • et al.
        Cellular proteins bound to immunodeficiency viruses: Implications for pathogenesis and vaccines.
        Science. 1992; 258: 1935-1938
        • Bagasra O.
        • Hauptman S.P.
        • Lischner H.W.
        • et al.
        Detection of human immunodeficiency virus type 1 pro virus in mononuclear cells by in situ polymerase chain reaction.
        N Engl J Med. 1992; 326: 1385-1391
        • Bailey J.J.
        • Fletcher J.E.
        • Chuck E.T.
        • et al.
        A kinetic model of CD4+ lymphocytes with the human immunodeficiency virus (HIV).
        Biosystems. 1992; 26: 177-183
        • Brake D.A.
        • Debourk C.
        • Biesecker G.
        Identification of an ARG-Gly-Asp (RGD) cell adhesion site in HIV-1 transactivation protein Tat.
        J Cell Biol. 1990; 111: 1275-1281
        • Brenneman D.E.
        • Westbrook G.L.
        • Fitzgerald S.P.
        • et al.
        Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide.
        Nature. 1988; 335: 639-642
        • Bukrinsky M.I.
        • Stanwick T.L.
        • Dempsey M.P.
        • et al.
        Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection.
        Science. 1991; 254: 423-427
        • Callahan L.N.
        • Roderiquez G.
        • Mallinson M.
        • et al.
        Analysis of HIV-induced autoantibodies to cryptic epitopes on human CD4.
        J Immunol. 1992; 149: 2194-2202
        • Cameron P.U.
        • Freudenthal P.S.
        • Barker J.M.
        • et al.
        Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells.
        Science. 1992; 257: 383-387
        • Capon D.J.
        • Ward H.R.R.
        The CD4-gpl20 interaction and AIDS pathogenesis.
        Ann Rev Immunol. 1991; 9: 649-678
        • Chesebro B.
        • Wehrly K.
        • Nishio J.
        • et al.
        Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: Definition of critical amino acids involved in cell tropism.
        J Virol. 1992; 66: 6547-6554
        • Clayton L.K.
        • Sieh M.
        • Pious D.A.
        • et al.
        Identification of human CD4 residues affecting class II MHC versus HIV-1 gpl20 binding.
        Nature. 1989; 339: 548-551
        • Clerici M.
        • Shearer G.M.
        ATH1 → TH2 switch is a critical step in the etiology of HIV infection.
        Immunol Today. 1993; 14: 107-111
        • Cloyd M.W.
        • Lynn W.S.
        Perturbation of host-cell membrane is a primary mechanism of HIV cytopathology.
        Virology. 1991; 181: 500-511
        • Cohen D.I.
        • Tani Y.
        • Tian H.
        • et al.
        Participation of tyrosine phosphorylation in the cytopathic effect of human immunodeficiency virus-1.
        Science. 1992; 256: 542-545
        • Cooper D.A.
        • Tindall B.
        • Wilson E.J.
        • et al.
        Characterization of T-lymphocyte responses during primary infection with human immunodeficiency virus.
        J Infect Dis. 1988; 157: 889-896
        • Crise B.
        • Rose J.K.
        Human immunodeficiency virus type 1 glycoprotein precursor retains a CD4-p56lck complex in the endoplasmic reticulum.
        J Virol. 1992; 66: 2296-2301
        • Dreyer E.B.
        • Kaiser P.K.
        • Offerman J.T.
        • et al.
        HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists.
        Science. 1990; 248: 364-367
        • Fox C.H.
        • Tenner-Rácz
        • Firpo A.
        • et al.
        Lymphoid germinal centers are reservoirs of human immunodeficiency virus type 1 RNA.
        J Infect Dis. 1991; 164: 1051-1057
      1. Gallo RC: Perspectives for the future control of HIV: OP-01-1. Presented at the IXth International Conference on AIDS, Berlin, June 6-11, 1993

        • Garcia V.J.
        • Alfano J.
        • Miler A.D.
        The negative effect of human immunodeficiency virus type 1 nef on cell surface CD4 expression is not species specific and requires the cytoplasmic domain of CD4.
        J Virol. 1993; 67: 1511-1516
        • Germain R.N.
        Antigen processing and CD4+ T-cell depletion in AIDS.
        Cell. 1988; 54: 441-444
        • Golding H.
        • Robey F.A.
        • Gates III, F.T.
        • et al.
        Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II/31 domain.
        J Exp Med. 1988; 167: 914-923
        • Golding H.
        • Shearer G.M.
        • Hillman K.
        • et al.
        Common epitope in human immunodeficiency virus (HIV) I-GP41 and HLA class II elicits immunosuppressive autoantibodies capable of contributing to immune dysfunction in HIV-I–infected individuals.
        J Clin Invest. 1989; 83: 1430-1435
        • Gougeon M-L
        • Montagnier L.
        Apoptosis in AIDS.
        Science. 1993; 260: 1269-1279
        • Grassi F.
        • Meneveri R.
        • Gullberg M.
        • et al.
        Human immunodeficiency virus type 1 gpl20 mimics hidden monomorphic epitope borne by class I major histocompatibility complex heavy chains.
        J Exp Med. 1991; 174: 53-62
        • Grimaila R.J.
        • Fuller B.A.
        • Rennert P.D.
        • et al.
        Mutations in the principal neutralization determinant of human immunodeficiency virus type 1 affect syncytium formation, virus infectivity, growth kinetics, and neutralization.
        J Virol. 1992; 66: 1875-1883
        • Grody W.W.
        • Fligiel S.
        • Naeim F.
        Thymus involution in the acquired immunodeficiency syndrome.
        Am J Clin Pathol. 1985; 84: 85-95
        • Groux H.
        • Torpier G.
        • Monte Y.
        • et al.
        Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals.
        J Exp Med. 1992; 175: 331-340
        • Hildreth J.E.
        • Orentas R.J.
        Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation.
        Science. 1989; 244: 1075-1078
        • Ho D.D.
        • Moughdil T.
        • Alam M.
        Quantitation of HIV-1 in the blood of infected persons.
        N Engl J Med. 1989; 321: 1621-1625
        • Howcroft T.K.
        • Strebei K.
        • Martin M.A.
        • et al.
        Repression of MHC class I gene promoter activity by two-exon tat of HIV.
        Science. 1993; 260: 1320-1322
        • Hoxie J.A.
        • Brass L.F.
        • Pletcher C.H.
        • et al.
        Cytopathic variants of an attentuated isolate of human immunodeficiency virus type 2 exhibit increased affinity for CD4.
        J Virol. 1991; 65: 5096-5101
        • Hsia K.
        • Spector S.A.
        Human immunodeficiency virus DNA is present in a high percentage of CD4+ lymphocytes of seropositive individuals.
        J Infect Dis. 1991; 164: 470-475
        • Janeway C.A.
        News and Views.
        Nature. 1991; 349: 459-460
        • Johnson M.A.
        • Cann A.J.
        Molecular determination of cell tropism of human immunodeficiency virus.
        Clin Infect Dis. 1992; 14: 747
        • Jurriaans S.
        • Dekker J.T.
        • de Ronde A.
        HIV-1 viral DNA load in peripheral blood mononuclear cells from seroconverters and long-term infected individuals.
        AIDS. 1992; 6: 635-641
        • Kiprov D.D.
        • Anderson R.E.
        • Morand P.R.
        • et al.
        Antilymphocyte antibodies for retroviruses in groups at high risk for AIDS [letter].
        N Engl J Med. 1985; 312: 1517
        • Kowalski M.
        • Ardman B.
        • Basiripour L.
        • et al.
        Antibodies to CD4 in individuals infected with human immunodeficiency virus type 1.
        Proc Natl Acad Sci USA. 1989; 86: 3346-3350
        • Laurence J.
        • Friedman S.
        • Chartash E.K.
        • et al.
        Human immunodeficiency virus infection of helper T cell clones.
        J Clin Invest. 1989; 83: 1843-1848
        • Laurence J.
        • Gottlieb A.B.
        • Kunkel H.G.
        • et al.
        Soluble suppressor factors in patients with the acquired immunodeficiency syndrome and its prodrome: Elaboration in vitro by T lymphocyte-adherent cell interactions.
        J Clin Invest. 1983; 72: 2072-2081
        • Laurence J.
        • Hodstev A.S.
        • Posnett D.N.
        Superantigen implicated in dependence of HIV-1 replication in T cells on TCR V/3 expression.
        Nature. 1992; 358: 255-259
        • Laurence J.
        Pathophysiology of HIV infection.
        Curr Opin Infect Dis. 1990; 3: 73-79
        • Laurent-Crawford A.G.
        • Krust B.
        • Muller S.
        • et al.
        The cytopathic effect of HIV is associated with apoptosis.
        Virology. 1991; 185: 829-839
        • Leonard R.
        • Zagury D.
        • Desportes I.
        • et al.
        Cytopathic effect of human immunodeficiency virus in T4 cells is linked to the last stage of virus infection.
        Proc Natl Acad Sci USA. 1988; 85: 3570-3574
        • Levy J.A.
        Pathogenesis of human immunodeficiency virus infection.
        Microbiol Rev. 1993; 57: 183-289
        • Lim S.G.
        • Condez A.
        • Lee C.A.
        Loss of mucosal CD4 lymphocytes is an early feature of HIV infection.
        Clin Exp Immunol. 1993; 92: 448-454
        • Linde M.
        • Otto S.A.
        • Jonker R.R.
        • et al.
        Programmed death of T cells in HIV-1 infection.
        Science. 1992; 257: 217-219
        • Littlefield J.W.
        Possible supplemental mechanisms in the pathogenesis of AIDS.
        Clin Immunol Immunopathol. 1992; 65: 85-97
        • Maggi E.
        • Macchia D.
        • Parronchi P.
        • et al.
        Reduced production of interleukin 2 and interferon gamma and enhanced helper activity for IgG synthesis by cloned CD4+ T cells from patients with AIDS.
        Eur J Immunol. 1987; 17: 1685-1690
        • Margolick J.B.
        • Volkman D.J.
        • Lane H.C.
        • et al.
        Clonal analysis of T lymphocytes in the acquired immunodeficiency syndrome.
        J Clin Invest. 1985; 76: 709-715
        • Merigan T.C.
        • Katzenstein D.A.
        Relation of the pathogenesis of human immunodeficiency virus infection to various strategies for its control.
        Rev Infect Dis. 1991; 13: 292-302
        • Meyaard L.
        • Otto S.A.
        • Jonker R.R.
        • et al.
        Programmed death of T cells in HIV-1 infection.
        Science. 1992; 257: 217-219
        • Michael N.L.
        • Vahey M.
        • Burke D.S.
        • et al.
        Viral DNA and mRNA expression correlate with the stage of human immunodeficiency virus (HIV) type 1 infection in humans: Evidence of viral replication in all stages of HIV disease.
        J Virol. 1992; 66: 310-316
        • Mohagheghpour N.
        • Chakrabarti R.
        • Stein B.S.
        • et al.
        Early activation events render T cells susceptible to HIV-l-induced syncytia formation.
        J Biol Chem. 1991; 266: 7233-7238
        • Mosier D.E.
        • Gulizia R.J.
        • Maclsaac P.D.
        • et al.
        Rapid loss of CD4+ T cells in human-PBL-SCID mice by noncytopathic HIV isolates.
        Science. 1993; 260: 689-692
        • Newell M.K.
        • Haughn L.J.
        • Maroun C.R.
        • et al.
        Death of mature T cells by separate ligation of CD4 and the T-cell receptor for antigen.
        Nature. 1990; 347: 286-289
        • Nowak M.A.
        • Anderson R.M.
        • McLean A.R.
        • et al.
        Antigenic diversity thresholds and the development of AIDS.
        Science. 1991; 254: 963-969
        • Nowak M.A.
        • May R.M.
        Coexistence and competition in HIV infections.
        J Theor Biol. 1992; 159: 329-342
        • Pang S.
        • Koyanagi Y.
        • Miles S.
        • et al.
        High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients.
        Nature. 1990; 343: 85-89
        • Pantaleo G.
        • Graziosi C.
        • Demarest J.F.
        • et al.
        HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease.
        Nature. 1993; 362: 355-358
        • Pantaleo G.
        • Graziosi C.
        • Fauci A.S.
        The immunopathogenesis of human immunodeficiency virus infection: Mechanisms of disease.
        N Engl J Med. 1993; 328: 327-335
        • Petit A.J.C.
        • Terpstra F.G.
        • Miedema F.
        Human immunodeficiency virus infection down-regulates HLA class II expression and induces differentiation in promonocytic U937 cells.
        J Clin Invest. 1987; 79: 1883-1889
        • Robey E.
        • Axel R.
        CD4: Collaborator in immunologic recognition and HIV infection.
        Cell. 1990; 60: 697-700
        • Roos M.T.L.
        • Lange J.M.A.
        • de Goede R.E.Y.
        • et al.
        Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection.
        J Infect Dis. 1992; 165: 427-432
        • Rosenberg Z.F.
        • Fauci A.S.
        Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infections.
        Ann NY Acad Sci. 1992; 164: 174
        • Scadden D.T.
        • Wang Z.
        • Groopman J.E.
        Quantitation of plasma human immunodeficiency virus type 1 RNA by competitive polymerase chain reaction.
        J Infect Dis. 1992; 165: 1119-1123
        • Scheppler J.A.
        • Nicholson J.K.A.
        • Swan D.C.
        • et al.
        Down-modulation of MHC-I in a CD4+ T-cell line, CEM-E5, after HIV-1 infection.
        J Immunol. 1989; 143: 2858-2866
        • Schnittman S.M.
        • Denning S.M.
        • Greenhouse J.J.
        • et al.
        Evidence for susceptibility of intra thymic T-cell precursors and their progeny carrying T-cell antigen receptor phenotypes TCRαβ+ and TCRγδ+ to human immunodeficiency virus infection: A mechanism for CD4+ (T4) lymphocyte depletion.
        Proc Natl Acad Sci USA. 1990; 87: 7727-7731
        • Schuitemaker H.
        • Koot M.
        • Kootstra N.A.
        • et al.
        Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus populations.
        J Virol. 1992; 66: 1354-1360
        • Schwartz R.H.
        A cell culture model for T lymphocyte clonal anergy.
        Science. 1990; 248: 1349-1356
        • Scott B.
        • Blüthmann H.
        • Teh H.S.
        • et al.
        The generation of mature T cells requires interaction of the αβ T-cell receptor with major histocompatibility antigens.
        Nature. 1989; 338: 591-593
        • Shaw G.M.
        • Hahn B.H.
        • Arya S.K.
        • et al.
        Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immunodeficiency syndrome.
        Science. 1984; 226: 1165-1171
        • Siliciano R.F.
        • Lawton T.
        • Knall C.
        • et al.
        Analysis of host-virus infection in AIDS with anti-gpl20 T-cell clones: Effect of HIV sequence variation and a mechanism for CD4+ cell depletion.
        Cell. 1988; 54: 561-575
        • Sodroski J.
        • Goi W.C.
        • Rosen C.
        • et al.
        Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity.
        Nature. 1986; 332: 470-474
        • Stevenson M.
        • Stanwick T.L.
        • Dempsey M.P.
        • et al.
        HIV-1 replication is controlled at the level of T-cell activation and pro viral integration.
        EMBO J. 1990; 5: 1551-1560
        • Varmus H.E.
        • Swanstrom R.
        Replication of retroviruses.
        in: Weiss R. Teich N. Varmus H. RNA Tumor Viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY1982-1985: 369-512
        • Vega M.A.
        • Guigo R.
        • Smith T.F.
        Autoimmune response in AIDS.
        Nature. 1990; 345: 26
        • Viscidi R.P.
        • Mayur K.
        • Lederman H.M.
        • et al.
        Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1.
        Science. 1989; 246: 1606-1608
        • Weimer R.
        • Daniel V.
        • Zimmermann R.
        • et al.
        Autoantibodies against CD4 cells are associated with CD4 helper defects in human immunodeficiency virus-infected patients.
        Blood. 1991; 77: 133-140
        • Weiss R.A.
        How does HIV cause AIDS?.
        Science. 1993; 260: 1273-1280
        • Werner T.
        • Ferroni S.
        • Saermark T.
        • et al.
        HIV-1 Nef protein exhibits structural and functional similarity to scorpior peptides interacting with K+ channels.
        AIDS. 1991; 5: 1301-1308
        • Wrightham M.
        • Schimpf A.
        • Pennington T.H.
        • et al.
        HIV induces modulation of functionally important cellular antigens.
        Clin Exp Immunol. 1991; 85: 75-79
        • Yoshida H.
        • Koga Y.
        • Moroi Y.
        • et al.
        The effect of p56lck, a lymphocyte specific protein tyrosine kinase, on the syncytium formation induced by human immunodeficiency virus envelope glycoprotein.
        Int Immunol. 1992; 4: 233-242
        • Zack J.A.
        • Arrigo S.J.
        • Weitsman S.R.
        • et al.
        HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure.
        Cell. 1990; 61: 213-222