Advertisement
Research Article| Volume 14, ISSUE 2, P203-220, June 1994

Molecular Biology of HIV

  • Didier Trono
    Correspondence
    Address reprint requests to Didier Trono, MD, Infectious Disease Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037-1099.
    Affiliations
    From the Infectious Disease Laboratory, The Salk Institute, La Jolla, California
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.
      This article reviews the molecular events involved in HIV replication. A special emphasis is placed on aspects most relevant to AIDS pathogenesis and on recent discoveries.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acres B.R.
        • Colon P.J.
        • Mochizuki D.Y.
        • et al.
        Rapid phosphorylation and modulation of the T4 antigen on cloned helper T cells induced by phorbol myristate acetate or antigen.
        J Biol Chem. 1986; 34: 16210
        • Ahmad N.
        • Venkatesan S.
        Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR.
        Science. 1988; 241: 1481
        • Aiken C.
        • Konner J.
        • Landau N.R.
        • et al.
        Nef induces CD4 endocytosis: Requirement for a critical di-leucine motif in the membrane-proximal CD4 cytoplasmic domain.
        Cell. 1994; 76: 1
        • Allan J.S.
        • Coligan J.E.
        • Lee T-H
        • et al.
        A new HTLV-III/LAV encoded antigen detected by antibodies from AIDS patients.
        Science. 1985; 230: 810
        • Altman A.
        • Coggeshall K.M.
        • Mustelin T.
        Molecular events mediating T cell activation.
        Adv Immunol. 1990; 48: 227
        • Anderson S.
        • Shugars D.C.
        • Swanstrom R.
        • et al.
        Nef from primary isolates of human immunodeficiency virus type 1 suppresses surface CD4 expression in human and mouse T cells.
        J Virol. 1993; 67: 4923
        • Arya S.K.
        • Guo C.
        • Josephs S.F.
        • et al.
        Trans-activator gene of human T-lymphotropic virus type III (HTLV-III).
        Science. 1985; 229: 69
        • Benson R.E.
        • Sanfridson A.
        • Ottinger J.S.
        • et al.
        Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection.
        J Exp Med. 1993; 177: 1561
        • Bukrinsky M.I.
        • Haggerty S.
        • Dempsey M.P.
        • et al.
        A nuclear targeting signal within HIV-1 matrix protein that governs infection of non-dividing cells.
        Nature (London). 1993; 365: 666
        • Bushman F.D.
        • Fujiwara T.
        • Craigie R.
        Retroviral DNA integration directed by HIV IN protein in vitro.
        Science. 1990; 259: 1555
        • Cohen E.A.
        • Dehni G.
        • Sodroski J.G.
        • et al.
        Human immunodeficiency virus vpr product is a virion-associated regulatory protein.
        J Virol. 1990; 64: 3097
        • Craigie R.
        • Fujiwara T.
        • Bushman F.
        The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro.
        Cell. 1990; 62: 829
        • Crise B.
        • Buonocore L.
        • Rose J.K.
        CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor.
        J Virol. 1990; 64: 5585
        • Crise B.
        • Rose J.K.
        Human immunodeficiency virus type 1 glycoprotein precursor retains a CD4-p56lck complex in the endoplasmic reticulum.
        J Virol. 1992; 66: 2296
        • Cullen B.R.
        Human immunodeficiency virus as a prototypic complex retrovirus.
        J Virol. 1991; 65: 1053
        • Cullen B.R.
        The HIV-1 Tat protein: An RNA sequence-specific processivity factor?.
        Cell. 1990; 63: 655
        • de Ronde A.
        • Klaver B.
        • Keulen W.
        • et al.
        Natural HIV-1 NEF accelerates virus replication in primary human lymphocytes.
        Virology. 1992; 188: 391
        • Feinberg M.B.
        • Baltimore D.
        • Frankel A.D.
        The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation.
        Proc Natl Acad Sci USA. 1991; 77: 4045
      1. Garcia JV, Miller AD: Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature (London) 350:1991

        • Gaynor R.
        Cellular transcription factors involved in the regulation of HIV-1 gene expression.
        AIDS. 1992; 6: 347
        • Gabuzda D.H.
        • Lawrence K.
        • Langhoff E.
        • et al.
        Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes.
        J Acquir Immune Defic Syndr. 1991; 4: 34
        • Gelderblom H.R.
        Assembly and morphology of HIV: Potential effect of structure on viral function.
        AIDS. 1991; 5: 617
        • Glaichenhaus N.
        • Shastri N.
        • Littman D.R.
        • et al.
        Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells.
        Cell. 1991; 64: 511
        • Guy B.
        • Kieny M.P.
        • Riviere Y.
        • et al.
        HIV F/3′ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product.
        Nature (London). 1987; 330: 266
        • Hammes S.R.
        • Dixon E.P.
        • Malim M.H.
        • et al.
        Nef protein of human immunodeficiency virus type 1: Evidence against its role as a transcriptional inhibitor.
        Proc Natl Acad Sci USA. 1989; 86: 9549
        • Harouse J.M.
        • Bhat S.
        • Spitalnik S.L.
        • et al.
        Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide.
        Science. 1991; 253: 320
        • Hattori N.
        • Michaels F.
        • Fargnoli K.
        • et al.
        The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages.
        Proc Natl Acad Sci USA. 1990; 87: 8080
        • Haughn L.
        • Gratton S.
        • Caron L.
        • et al.
        Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the αß T-cell receptor.
        Nature (London). 1992; 358: 328
        • Jacks T.
        • Power M.D.
        • Masiarz F.R.
        • et al.
        Characterization of ribosomal frameshifting in HIV-1 gag-pol expression.
        Nature (London). 1988; 331: 280
        • Kappes J.C.
        • Conway J.A.
        • Lee S.W.
        • et al.
        Human immunodeficiency virus type 2 vpx protein augments viral infectivity.
        Virology. 1991; 184: 197
        • Kestler H.W.
        • Ringler D.J.
        • Mori K.
        • et al.
        Importance of the nef gene for maintenance of high virus loads and for development of AIDS.
        Cell. 1991; 65: 651
        • Kim S.
        • Byrn R.
        • Groopman J.
        • et al.
        Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression.
        J Virol. 1989; 63: 3708
        • Kim S.
        • Ikeuchi K.
        • Byrn R.
        • et al.
        Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1.
        Proc Natl Acad Sci USA. 1989; 86: 9544
        • Klimkait T.
        • Strebei K.
        • Hoggan M.D.
        • et al.
        The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release.
        J Virol. 1990; 64: 621
        • Klotman M.E.
        • Kim S.
        • Buchbinder A.
        • et al.
        Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes.
        Proc Natl Acad Sci USA. 1991; 88: 5011
        • Laspia M.F.
        • Rice A.P.
        • Mathews M.B.
        HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation.
        Cell. 1989; 59: 283
        • Lawrence J.B.
        • Cochrane A.W.
        • Johnson C.V.
        • et al.
        The HIV-1 Rev protein: A model system for coupled RNA transport and translation.
        New Biol. 1991; 3: 1220
        • Levy D.N.
        • Fernandes L.S.
        • Williams W.V.
        • et al.
        Induction of cell differentiation by human immunodeficiency virus 1 vpr.
        Cell. 1993; 72: 541
        • Lewis P.
        • Hensel M.
        • Emerman M.
        Human immunodeficiency virus infection of cells arrested in the cell cycle.
        EMBO J. 1992; 11: 3053
        • Lori R.
        • di Marzo Veronese F.
        • De Vico A.L.
        • et al.
        Viral DNA carried by human immunodeficiency virus type 1 virions.
        J Virol. 1992; 66: 5067
        • Luciw P.A.
        • Cheng-Mayer C.
        • Levy J.A.
        Mutational analysis of the human immunodeficiency virus: The or/-B region down-regulates virus replication.
        Proc Natl Acad Sci USA. 1987; 84: 1434
        • Malim M.H.
        • Cullen B.R.
        HIV-1 structural gene expression required the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency.
        Cell. 1991; 65: 241
        • Niederman T.M.J.
        • Thielan B.J.
        • Ratner L.
        Human immunodeficiency virus type 1 negative factor is a transcriptional silencer.
        Proc Natl Acad Sci USA. 1989; 86: 1128
        • Pomerantz R.G.
        • Seshamma T.
        • Trono D.
        Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: Potential implications for latency.
        J Virol. 1992; 66: 1809
        • Pomerantz R.J.
        • Feinberg M.B.
        • Trono D.
        • et al.
        Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression.
        J Exp Med. 1990; 172: 253
        • Seshamma T.
        • Bagasra O.
        • Trono D.
        • et al.
        Blocked early-stage latency in the peripheral blood cells of certain HIV-l-infected individuals.
        Proc Natl Acad Sci USA. 1992; 89: 10663
        • Sodroski J.
        Structure and function of the HIV-1 envelope glycoproteins.
        ATIN. 1993; 5: 1
        • Skowronski J.
        • Parks D.
        • Mariani R.
        Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene.
        EMBO J. 1993; 12: 703
        • Stevenson M.
        • Meier C.
        • Mann A.M.
        • et al.
        Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: Mechanism for persistence in AIDS.
        Cell. 1988; 53: 483
        • Trono D.
        Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses.
        J Virol. 1992; 66: 4893
        • Varmus H.E.
        • Swanstrom R.
        Replication of retroviruses.
        in: Weiss R. Teich N. Varmus H. RNA Tumor Viruses. ed 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY1985: 74
        • Veillette A.
        • Bookman M.A.
        • Horak E.M.
        • et al.
        Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck.
        Nature (London). 1989; 338: 257
        • von Schwedler U.
        • Song J.
        • Aiken C.
        • et al.
        vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells.
        J Virol. 1993; 67: 4945
        • Weyand C.M.
        • Goronzy J.
        • Fathman C.G.
        Modulation of CD4 by antigenic activation.
        J Immunol. 1987; 138: 1351
        • Willey R.L.
        • Maldarelli F.
        • Martin M.A.
        • et al.
        Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4.
        J Virol. 1992; 66: 7193
        • Willey R.L.
        • Maldarelli F.
        • Martin M.A.
        • et al.
        Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gpl60-CD4 complexes.
        J Virol. 1992; 66: 226
        • Yu X.
        • Yuan X.
        • Matsuda Z.
        • et al.
        The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions.
        J Virol. 1992; 66: 5966
        • Zazopoulos E.
        • Haseltine W.S.
        Mutational analysis of the human immunodeficiency virus type 1 Eli Nef function.
        Proc Natl Acad Sci USA. 1992; 89: 6634