Advertisement
Research Article| Volume 20, ISSUE 2, P383-406, June 2000

Download started.

Ok

Human Papillomavirus Oncogenesis

  • Ronald C. McGlennen
    Correspondence
    Address reprint requests to: Ronald C. McGlennen, MD, Department of Laboratory Medicine and Pathology, 420 Delaware Street, SE, Box 609, Minneapolis, MN 55455
    Affiliations
    From the Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.
      Papillomaviruses are ubiquitous in nature and cause a variety of benign and malignant disease of the skin, respiratory tract, and the genital mucosa. The human papillomavirus (HPV) uniquely has evolved to take advantage of the host cell mechanism of proliferation and differentiation for the purpose of self-replication and the production of infectious virus. The life cycle can be disrupted as a consequence of viral and host cell chromosomes, accompanied by the uncoupling of the normal viral regulation of gene expression. In this setting, 3 viral genes emerge as possessing the ability to cause neoplastic transformation. Most important among these are E6 and E7, which function to disrupt the normal cell cycle checkpoint controls making the host cell susceptible to additional genetic insults.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Andresson T.
        • Sparkowski J.
        • Goldstein D.
        • et al.
        Vacuolar H+-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein.
        J Biol Chem. 1995; 270: 6830-6837
        • Arbeit I.M.
        • Howley P.M.
        • Hanahan D.
        Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice.
        Proc Natl Acad Sci U S A. 1996; 93: 2930-2935
        • Arroyo M.
        • Bagchi S.
        • Raychaudhuri P.
        Association of the human papillomavirus type-16 E7 protein with the S-phase-specific E2F-cyclin-A complex.
        Mol Cell Biol. 1993; 13: 6537-6546
        • Auborn K.
        • Galli R.
        • Dilorenzo T.
        • et al.
        Identification of DNA-protein interaction and enhancer activity at the 5′ end of the upstream regulatory region in human papillomavirus type 11.
        Virology. 1989; 170: 123-130
        • Baker C.
        • Phelps W.
        • Lindgren V.
        • et al.
        Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines.
        J Virol. 1987; 61: 962-971
        • Banks L.
        • Barnett S.C.
        • Crook T.
        HPV-16 E7 functions at the G1 to S phase transition in the cell cycle.
        Oncogene. 1990; 5: 833-837
        • Banks L.
        • Edmonds C.
        • Vousden K.H.
        Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells.
        Oncogene. 1990; 5: 1383-1389
        • Barbosa M.
        • Vass W.
        • Lowy D.
        • et al.
        In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential.
        J Virol. 1991; 65: 292-298
        • Barbosa M.S.
        • Lowy D.R.
        • Schiller J.T.
        Papillomavirus polypeptides E6 and E7 are zincbinding proteins.
        J Virol. 1989; 63: 1404-1407
        • Bouvard V.
        • Matlashewski G.
        • Gu Z.
        • et al.
        The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression.
        Virology. 1994; 203: 73-80
        • Byrne J.
        • Tsao M.
        • Fraser R.
        • et al.
        Human papillomavirus-11 DNA in a patient with chronic laryngotracheobronchial papillomatosis and metastatic squamous-cell carcinoma of the lung.
        N Engl J Med. 1987; 317: 873-878
        • Cannizzaro L.A.
        • Durst M.
        • Mendez M.J.
        • et al.
        Regional chromosome localization of human papillomavirus integration sites near fragile sites, oncogenes, and cancer chromosome breakpoints.
        Cancer Genet Cytogenet. 1988; 33: 93-98
        • Chen S.L.
        • Huang C.H.
        • Tsai T.C.
        • et al.
        The regulation mechanism of c-jun and junB by human papillomavirus type 16 E5 oncoprotein.
        Arch Virol. 1996; 141: 791-800
        • Chen S.L.
        • Lin Y.K.
        • Li L.Y.
        • et al.
        E5 proteins of human papillomavirus types 11 and 16 transactivate the c-fos promoter through the NF1 binding element.
        J Virol. 1996; 70: 8558-8563
        • Chen Y.H.
        • Huang L.H.
        • Chen T.M.
        Differential effects of progestins and estrogens on long control regions of human papillomavirus types 16 and 18.
        Biochem Biophys Res Commun. 1996; 224: 651-659
        • Chinami M.
        • Inoue M.
        • Masunaga K.
        • et al.
        Nucleic acid binding by zinc finger-like motif of human papillomavirus type 16 E7 oncoprotein.
        J Virol Methods. 1996; 59: 173-176
        • Ciccolini F.
        • Dipasquale G.
        • Carlotti F.
        • et al.
        Functional studies of E7 proteins from different HPV types.
        Oncogene. 1994; 9: 2633-2638
        • Cohen B.
        • Goldstein D.
        • Rutledge L.
        • et al.
        Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.
        J Virol. 1993; 67: 5303-5311
        • Cripe T.
        • Alderborn A.
        • Anderson R.
        • et al.
        Transcriptional activation of the human papillomavirus-16 P97 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and AP-l-responsive modules.
        New Biologist. 1990; 2: 450-463
        • Crook T.
        • Storey A.
        • Almond N.
        • et al.
        Human papillomavirus type 16 cooperates with activated ras and fos oncogenes in the hormone-dependent transformation of primary mouse cells.
        Proc Natl Acad Sei U S A. 1988; 85: 8820-8824
        • Daniel B.
        • Rangarajan A.
        • Mukherjee G.
        • et al.
        The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions.
        J Gen Virol. 1997; 78: 1095-1101
        • Davies R.
        • Hicks R.
        • Crook T.
        • et al.
        Human papillomavirus type 16 E7 associates with a histone HI kinase and with p107 through sequences necessary for transformation.
        J Virol. 1993; 67: 2521-2528
        • Day P.M.
        • Roden R.B.S.
        • Lowy D.R.
        • et al.
        The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, LI, and the viral transcription/ replication protein, E2, to PML oncogenic domains.
        J Virol. 1998; 72: 142-150
        • Desaintes C.
        • Demeret C.
        Control of papillomavirus DNA replication and transcription.
        Semin Cancer Biol. 1996; 7: 339-347
        • Dong G.
        • Broker T.
        • Chow L.
        Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements.
        J Virol. 1994; 68: 1115-1127
        • Durst M.
        • Croce C.M.
        • Gissmann L.
        • et al.
        Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas.
        Proc Natl Acad Sei USA. 1987; 84: 1070-1074
        • Durst M.
        • Kleinheinz A.
        • Hotz M.
        • et al.
        The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours.
        J Gen Virol. 1985; 66: 1515-1522
        • Dyson N.
        • Howley P.
        • Munger K.
        • et al.
        The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product.
        Science. 1989; 243: 934-937
        • Evans M.F.
        • Koreth J.
        • Bakkenist C.J.
        • et al.
        Allelic deletion at 11q23.3-q25 is an early event in cervical neoplasia.
        Oncogene. 1998; 16: 2557-2564
        • Gallego M.I.
        • Lazo P.A.
        Deletion in human chromosome region 12q13-15 by integration of human papillomavirus DNA in a cervical carcinoma cell line.
        J Biol Chem. 1995; 270: 24321-24326
        • Galloway D.A.
        • McDougall J.K.
        The disruption of cell cycle checkpoints by papillomavirus oncoproteins contributes to anogenital neoplasia.
        Semin Cancer Biol. 1996; 7: 309-315
        • Ghai J.
        • Ostrow R.S.
        • Tolar J.
        • et al.
        The E5 gene product of rhesus papillomavirus is an activator of endogenous ras and phosphatidylinositol-3’-kinase in NIH 3T3 cells.
        Proc Natl Acad Sci U S A. 1996; 93: 12879-12884
        • Gilles C.
        • Piette J.
        • Ploton D.
        • et al.
        Viral integration sites in human papilloma virus-33-immortalized cervical keratinocyte cell lines.
        Cancer Genet Cytogenet. 1996; 90: 63-69
        • Gloss B.
        • Chong T.
        • Bernard H.
        Numerous nuclear proteins bind the long control region of human papillomavirus type 16: A subset of 6 of 23 DNase I-protected segments coincides with the location of cell-type-specific enhancer.
        EMBO J. 1989; 63: 1142-1152
        • Goldstein D.
        • Finbow M.
        • Andresson T.
        • et al.
        Bovine papillomavirus-E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases.
        Nature. 1991; 352: 347-349
        • Goldstein D.
        • Schlegel R.
        The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein.
        EMBO J. 1990; 9: 137-145
        • Hickman E.S.
        • Bates S.
        • Vousden K.H.
        Perturbation of the p53 response by human papillomavirus type 16 E7.
        J Virol. 1997; 71: 3710-3718
        • Hietanen S.
        • Syrjanen K.
        • Syrjanen S.
        Characterization of keratin and cell cycle protein expression in cell lines from squamous intraepithelial lesions progressing towards a malignant phenotype.
        Br J Cancer. 1998; 77: 766-775
        • Hiraiwa A.
        • Kiyono T.
        • Segawa K.
        • et al.
        Comparative study on E6-Genes and E7-Genes of some cutaneous and genital papillomaviruses of human origin for their ability to transform 3Y1-Cells.
        Virology. 1993; 192: 102-111
        • Holt S.E.
        • Aisner D.L.
        • Shay J.W.
        • et al.
        Lack of cell cycle regulation of telomerase activity in human cells.
        Proc Natl Acad Sei USA. 1997; 94: 10687-10692
        • Hubbert N.L.
        • Sedman S.A.
        • Schiller J.T.
        Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes.
        J Virol. 1992; 66: 6237-6241
        • Hudson J.
        • Bedell M.
        • McCance D.
        • et al.
        Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18.
        J Virol. 1990; 64: 519-526
        • Huibregtse J.M.
        • Beaudenon S.L.
        Mechanism of HPV E6 proteins in cellular transformation.
        Semin Cancer Biol. 1996; 7: 317-326
        • Huibregtse J.M.
        • Scheffner M.
        • Beaudenon S.
        • et al.
        A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase [published erratum appears in Proc Natl Acad Sci U S A 1995 May 23;92(11):5249].
        Proc Natl Acad Sci U S A. 1995; 92: 2563-2567
        • Jones D.L.
        • Munger K.
        Interactions of the human papillomavirus E7 protein with cell cycle regulators.
        Semin Cancer Biol. 1996; 7: 327-337
        • Kanda T.
        • Teshima H.
        • Katase K.
        • et al.
        Occurrence of the antibody against human papillomavirus type 16 virion protein L2 in patients with cervical cancer and dysplasia.
        Intervirology. 1995; 38: 187-191
        • Kasher M.S.
        • Roman A.
        Characterization of human papillomavirus type 6b DNA isolated from an invasive squamous carcinoma of the vulva.
        Virology. 1988; 165: 225-233
        • Kaur P.
        • McDougall J.
        Characterization of primary human keratinocytes transformed by human papillomavirus type 18.
        J Virol. 1988; 62: 1917-1924
        • Kessis T.D.
        • Connolly D.C.
        • Hedrick L.
        • et al.
        Expression of HPV16 E6 or E7 increases integration of foreign DNA.
        Oncogene. 1996; 13: 427-431
        • Khare S.
        • Kumar K.U.
        • Tang S.C.
        • et al.
        Up-regulation of hormone response of human papillomavirus type 16 expression and increased DNA-protein binding by consensus mutations of viral glucocorticoid response elements.
        J Med Virol. 1996; 50: 254-262
        • Khare S.
        • Pater M.M.
        • Tang S.C.
        • et al.
        Effect of glucocorticoid hormones on viral gene expression, growth, and dysplastic differentiation in HPV16-immortalized ectocervical cells.
        Exp Cell Res. 1997; 232: 353-360
        • Kirnbauer R.
        • Booy F.
        • Cheng N.
        • et al.
        Papillomavirus LI major capsid protein self-assembles into virus-like particles that are highly immunogenic.
        Proc Natl Acad Sei USA. 1992; 89: 12180-12184
        • Klingelhutz A.J.
        • Foster S.A.
        • McDougall J.K.
        Telomerase activation by the E6 gene product of human papillomavirus type 16.
        Nature. 1996; 380: 79-82
        • Kondoh G.
        • Li Q.
        • Pan J.
        • et al.
        Transgenic models for papillomavirus-associated multistep carcinogenesis.
        Intervirology. 1995; 38: 181-186
        • Leechanachai P.
        • Banks L.
        • Moreau F.
        • et al.
        The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus.
        Oncogene. 1992; 7: 19-25
        • Levine A.J.
        p53, the cellular gatekeeper for growth and division.
        Cell. 1997; 88: 323-331
        • Liu Z.
        • Ghai J.
        • Ostrow R.
        • et al.
        The E6 gene of human papillomavirus type 16 is sufficient for transformation of baby rat kidney cells in co-transformation with activated Ha-ras.
        Virology. 1994; 201: 388-396
        • Lopez-Borges S.
        • Gallego M.I.
        • Lazo P.A.
        Recurrent integration of papillomavirus DNA within the human 12q14-15 uterine breakpoint region in genital carcinomas.
        Genes Chromosomes Cancer. 1998; 23: 55-60
        • Maki C.G.
        • Huibregtse J.M.
        • Howley P.M.
        In vivo ubiquitination and proteasome-medi-ated degradation of p53.
        Cancer Res. 1996; 56: 2649-2654
        • Manias D.
        • Ostrow R.
        • McGlennen R.
        • et al.
        Characterization of integrated human papillomavirus type 11 DNA in primary and metastatic tumors from a renal transplant recipient.
        Cancer Res. 1989; 49: 2514-2519
        • Mark H.F.L.
        • Santoro K.
        • Campbell W.
        • et al.
        Integration of human papillomavirus sequences in cervical tumor cell lines.
        Ann Clin Lab Sei. 1996; 26: 147-153
        • Martin P.
        • Vass W.
        • Schiller J.
        • et al.
        The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors.
        Cell. 1989; 59: 21-32
        • Matlashewski G.
        • Schneider J.
        • Banks L.
        • et al.
        Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells.
        EMBO J. 1987; 6: 1741-1746
        • Matsuura T.
        • Sutcliffe J.S.
        • Fang P.
        • et al.
        De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.
        Nat Genet. 1997; 15: 74-77
        • McGlennen R.
        • Ghai J.
        • Ostrow R.
        • et al.
        Cellular transformation by a unique isolate of human papillomavirus type 11.
        Cancer Res. 1992; 52: 5872-5878
        • Merchant A.K.
        • Loney T.L.
        • Maybaum J.
        Expression of wild-type p53 stimulates an increase in both Bax and Bcl-x(L) protein content in HT29 cells.
        Oncogene. 1996; 13: 2631-2637
        • Muliokandov M.R.
        • Kholodilov N.G.
        • Atkin N.B.
        • et al.
        Genomic alterations in cervical carcinoma: Losses of chromosome heterozygosity and human papilloma virus tumor status.
        Cancer Res. 1996; 56: 197-205
        • Nilson L.
        • DiMaio D.
        Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein.
        Mol Cell Biol. 1993; 13: 4137-4445
        • O’Connor M.
        • Bernard H.
        Oct-1 activates the epithelial-specific enhancer of human papillomavirus type 16 via a synergistic interaction with NFI at a conserved composite regulatory element.
        Virology. 1995; 207: 77-88
        • O’Connor M.J.
        • Tan S.H.
        • Tan C.H.
        • et al.
        YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity.
        J Virol. 1996; 70: 6529-6539
        • Ostrow R.
        • Bender M.
        • Niimura M.
        • et al.
        Human papillomavirus DNA in cutaneous primary and metastasized squamous cell carcinomas from patients with epidermodysplasia verruciformis.
        Proc Natl Acad Sei U S A. 1982; 79: 1634-1638
        • Paggi M.G.
        • Baidi A.
        • Bonetto F.
        • et al.
        Retinoblastoma protein family in cell cycle and cancer: A review.
        J Cell Biochem. 1996; 62: 418-430
        • Parazzini F.
        • Franceschi S.
        • Lavecchia C.
        • et al.
        The epidemiology of female genital tract cancers [review].
        International Journal of Gynecological Cancer. 1997; 7: 169-181
        • Parazzini F.
        • LaVecchia C.
        • Negri E.
        • et al.
        Case-control study of oestrogen replacement therapy and risk of cervical cancer.
        BMJ. 1997; 315: 85-88
        • Pater A.
        • Belaguli N.
        • Pater M.
        Glucocorticoid requirement for growth of human papillomavirus 16-transformed primary rat kidney epithelial cells—correlation of development of hormone resistance with viral RNA expression and processing.
        Cancer Res. 1993; 53: 4432-4436
        • Pater M.M.
        • Mittal R.
        • Pater A.
        Role of steroid hormones in potentiating transformation of cervical cells by human papillomaviruses.
        Trends Microbiol. 1994; 2: 229-234
        • Pater M.M.
        • Pater A.
        Human papillomavirus types 16 and 18 sequences in carcinoma cell lines of the cervix.
        Virology. 1985; 145: 313-318
        • Pei X.
        • Meek J.
        • Greenhalgh D.
        • et al.
        Cotransfection of HPV 18 and v-fos DNA induces tumorigenicity of primary human keratinocytes.
        Virology. 1993; 196: 855-860
        • Petti L.
        • Nilson L.
        • DiMaio D.
        Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein.
        EMBO J. 1991; 10: 845-855
        • Popescu N.C.
        • Zimonjic D.B.
        Alterations of chromosome 11q13 in cervical carcinoma cell lines.
        Am J Hum Genet. 1996; 58: 422-424
        • Ramesar J.E.
        • Rybicki E.P.
        • Williamson A.L.
        Sequence variation in the LI gene of human papillomavirus type 16 from Africa.
        Arch Virol. 1995; 140: 1863-1870
        • Rando R.F.
        • Groff D.E.
        • Chirikjian J.G.
        • et al.
        Isolation and characterization of a novel human papillomavirus type 6 DNA from an invasive vulvar carcinoma.
        J Virol. 1986; 57: 353-356
        • Roberts S.
        • Ashmole I.
        • Gibson L.
        • et al.
        Mutational analysis of human papillomavirus E4 proteins: Identification of structural features important in the formation of cytoplasmic E4/ cytokeratin networks in epithelial cells.
        J Virol. 1994; 68: 6432-6445
        • Roberts S.
        • Ashmole I.
        • Johnson G.
        • et al.
        Cutaneous and mucosal human papillomavi-rus-E4 proteins form intermediate filament-like structures in epithelial cells.
        Virology. 1993; 197: 176-187
        • Russo T.
        • Zambrano N.
        • Esposito F.
        • et al.
        A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress.
        J Biol Chem. 1995; 270: 29386-29391
        • Sang B.C.
        • Barbosa M.S.
        Single amino acid substitutions in “low-risk” human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the “high-risk” HPV E7 oncoproteins.
        Proc Natl Acad Sci U S A. 1992; 89: 8063-8067
        • Scheffner M.
        • Huibregtse J.
        • Vierstra R.
        • et al.
        The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53.
        Cell. 1993; 75: 495-505
        • Schiller J.
        • Vass W.
        • Vousden K.
        • et al.
        E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene.
        J Virol. 1986; 57: 1-6
        • Schmitt A.
        • Harry J.
        • Rapp B.
        • et al.
        Comparison of the properties of the E6 and E7 genes of low-and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1.
        J Virol. 1994; 68: 7051-7059
        • Smotkin D.
        • Wettstein F.
        Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein.
        Proc Natl Acad Sci U S A. 1986; 83: 4680-4684
        • Stoppler H.
        • Hartmann D.P.
        • Sherman L.
        • et al.
        The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length.
        J Biol Chem. 1997; 272: 13332-13337
        • Stoppler M.C.
        • Straight S.W.
        • Tsao G.
        • et al.
        The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA.
        Virology. 1996; 223: 251-254
        • Storey A.
        • Massimi P.
        • Dawson K.
        • et al.
        Conditional immortalization of primary cells by human papillomavirus type 18 E6 and EJ-ras defines an E6 activity in G(0)/G(1) phase which can be substituted for mutations in p53.
        Oncogene. 1995; 11: 653-661
        • Storey A.
        • Massini P.
        • Dawson K.
        • et al.
        Conditional immortalization of primary cells by human papillomavirus type 18 E6 and E5-ras defines an E6 activity in G(0)/G(1) phase which can be substituted for by mutations in p53.
        Oncogene. 1996; 12: 945
        • Taniguchi A.
        • Kikuchi K.
        • Nagata K.
        • et al.
        A cell-type-specific transcription enhancer of type 16 human papillomavirus (HPV 16)-P97 promoter is defined with HPV-associated cellular events in human epithelial cell lines.
        Virology. 1993; 195: 500-510
        • Tergaonkar V.
        • Mythily D.V.
        • Krishna S.
        Cytokeratin patterns of expression in human epithelial cell lines correlate with transcriptional activity of the human papillomavirus type 16 upstream regulatory region.
        J Gen Virol. 1997; 78: 2601-2606
        • Tian E.M.
        • Gazitt Y.
        The role of p53, bcl-2 and bax network in dexamethasone induced apoptosis in multiple myeloma cell lines.
        Int J Oncol. 1996; 8: 719-726
        • Valle G.
        • Banks L.
        The human papillomavirus (HPV)-6 and HPV-16 E5 proteins cooperate with HPV-16 E7 in the transformation of primary rodent cell.
        J Gen Virol. 1995; 76: 1239-1245
        • Waldman T.
        • Kanzler K.W.
        • Vogelstein B.
        p21 is necessary for the p53-mediated G(1) arrest in human cancer cells.
        Cancer Res. 1995; 55: 5187-5190
        • Watts S.
        • Phelps W.
        • Ostrow R.
        • et al.
        In vitro cellular transformation by human papillomavirus DNA.
        Science. 1984; 225: 634-636
        • Werness B.
        • Levine A.
        • Howley P.
        Association of human papillomavirus type 16 and 18 E6 proteins with p53.
        Science. 1990; 248: 76-79
        • Wheeler T.T.
        • OBanion M.K.
        • Colasurdo A.M.
        • et al.
        Bovine papillomavirus E5 oncogene stimulates DNA synthesis in C127 fibroblasts without general effects on growth factor responsive protein phosphorylations.
        Arch Virol. 1997; 142: 953-964
        • Willumsen B.
        • Vass W.
        • Velu T.
        • et al.
        The bovine papillomavirus E5 oncogene can cooperate with ras: Identification of p21 amino acids critical for transformation by c-rasH but not v-rasH.
        Mol Cell Biol. 1991; 11: 6026-6033
        • Yamamoto Y.
        • Huibregtse J.M.
        • Howley P.M.
        The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing.
        Genomics. 1997; 41: 263-266
        • Yokoyama M.
        • Nakao Y.
        • Yang X.
        • et al.
        Alterations in physical state and expression of human papillomavirus type 18 DNA following crisis and establishment of immortalized ectocervical cells.
        Virus Res. 1995; 37: 139-151